Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

AP2 transcription factor induces apoptosis in retinoblastoma cells.

  • Xiaodong Li‎ et al.
  • Genes, chromosomes & cancer‎
  • 2010‎

The underlying cause of human retinoblastoma is complete inactivation of both copies of the RB1 gene. Other chromosome abnormalities, with the most common being extra copies of chromosome arm 6p, are also observed in retinoblastoma. The RB protein has previously been shown to interact with TFAP2 transcription factors. Here, we show that TFAP2A and TFAP2B, which map to chromosome arm 6p, are expressed in the amacrine and horizontal cells of human retina. TFAP2A RNA can readily be detected in retinoblastoma cell lines and tumors; however, the great majority of retinoblastoma cell lines and tumors are completely devoid of TFAP2A protein and TFAP2B RNA/protein. Transfection of TFAP2A and TFAP2B expression constructs into retinoblastoma cells induces apoptosis and inhibits proliferation. Our results suggest that a consequence of loss of RB1 gene function in retinoblastoma cells is inactivation of TFAP2A and TFAP2B function. We propose that inability to differentiate along the amacrine/horizontal cell lineages may underlie retinoblastoma tumor formation.


Cytoplasmic aggregation of DDX1 in developing embryos: Early embryonic lethality associated with Ddx1 knockout.

  • Matthew R Hildebrandt‎ et al.
  • Developmental biology‎
  • 2019‎

Temporally-regulated maternal RNA translation is essential for embryonic development, with defective degradation resulting in stalled 2-cell embryos. We show that DDX1, a DEAD box protein implicated in RNA transport, may be a key regulator of maternal RNA utilization. DDX1 protein localizes exclusively to cytoplasmic granules in both oocytes and early stage mouse embryos, with DDX1 requiring RNA for retention at these sites. Homozygous knockout of Ddx1 causes stalling of mouse embryos at the 2-4 cell stages. These results suggest a maternal RNA-dependent role for DDX1 in the progression of embryos past the 2-4 cell stage. The change in appearance of DDX1-containing granules in developing embryos further supports a role in temporally-regulated degradation of RNAs. We carried out RNA-immunoprecipitations (RNA-IPs) to identify mRNAs bound to DDX1 in 2-cell embryos, focusing on 16 maternal genes previously shown to be essential for embryonic development past the 1- to 2-cell stages. Five of these RNAs were preferentially bound by DDX1: Ago2, Zar1, Tle6, Floped and Tif1α. We propose that DDX1 controls access to subsets of key maternal RNAs required for early embryonic development.


AP-2ε Expression in Developing Retina: Contributing to the Molecular Diversity of Amacrine Cells.

  • Saket Jain‎ et al.
  • Scientific reports‎
  • 2018‎

AP-2 transcription factors play important roles in the regulation of gene expression during development. Four of the five members of the AP-2 family (AP-2α, AP-2β, AP-2γ and AP-2δ) have previously been shown to be expressed in developing retina. Mouse knockouts have revealed roles for AP-2α, AP-2β and AP-2δ in retinal cell specification and function. Here, we show that the fifth member of the AP-2 family, AP-2ε, is also expressed in amacrine cells in developing mammalian and chicken retina. Our data indicate that there are considerably fewer AP-2ε-positive cells in the developing mouse retina compared to AP-2α, AP-2β and AP-2γ-positive cells, suggesting a specialized role for AP-2ε in a subset of amacrine cells. AP-2ε, which is restricted to the GABAergic amacrine lineage, is most commonly co-expressed with AP-2α and AP-2β, especially at early stages of retinal development. Co-expression of AP-2ε and AP-2γ increases with differentiation. Analysis of previously published Drop-seq data from single retinal cells supports co-expression of multiple AP-2s in the same cell. Since AP-2s bind to their target sequences as either homodimers or heterodimers, our work suggests spatially- and temporally-coordinated roles for combinations of AP-2 transcription factors in amacrine cells during retinal development.


CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid.

  • Rong-Zong Liu‎ et al.
  • Molecular cancer‎
  • 2015‎

Clinical trials designed to test the efficacy of retinoic acid (RA) as an adjuvant for the treatment of solid cancers have been disappointing, primarily due to RA resistance. Estrogen receptor (ER)-negative breast cancer cells are more resistant to RA than ER-positive cells. The expression and subcellular distribution of two RA-binding proteins, FABP5 and CRABP2, has already been shown to play critical roles in breast cancer cell response to RA. CRABP1, a third member of the RA-binding protein family, has not previously been investigated as a possible mediator of RA action in breast cancer.


The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells.

  • Rong-Zong Liu‎ et al.
  • Molecular oncology‎
  • 2020‎

Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid-binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial-to-mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β-oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP-PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.


Differential CRX and OTX2 expression in human retina and retinoblastoma.

  • Darryl D Glubrecht‎ et al.
  • Journal of neurochemistry‎
  • 2009‎

The histogenesis of retinoblastoma tumors remains controversial, with the cell-of-origin variably proposed to be an uncommitted retinal progenitor cell, a bipotent committed cell, or a cell committed to a specific lineage. Here, we examine the expression of two members of the orthodenticle family implicated in photoreceptor and bipolar cell differentiation, cone-rod homeobox, CRX, and orthodenticle homeobox 2, OTX2, in normal human retina, retinoblastoma cell lines and retinoblastoma tumors. We show that CRX and OTX2 have distinct expression profiles in the developing human retina, with CRX first expressed in proliferating cells and cells committed to the bipolar lineage, and OTX2 first appearing in the photoreceptor lineage. In the mature retina, CRX levels are highest in photoreceptor cells whereas OTX2 is preferentially found in bipolar cells and in the retinal pigmented epithelium. Both CRX and OTX2 are widely expressed in retinoblastoma cell lines and in retinoblastoma tumors, although CRX is more abundant than OTX2 in the differentiated elements of retinoblastoma tumors such as large rosettes, Flexner-Wintersteiner rosettes and fleurettes. Widespread expression of CRX and OTX2 in retinoblastoma tumors and cell lines suggests a close link between the cell-of-origin of retinoblastoma tumors and cells expressing CRX and OTX2.


Disabled-1 alternative splicing in human fetal retina and neural tumors.

  • Sachin Katyal‎ et al.
  • PloS one‎
  • 2011‎

The Reelin-Dab1 signaling pathway plays a critical role in the positioning of migrating neurons, dendrite formation and lamination in the developing central nervous system. We have previously identified two alternatively spliced forms of Dab1 in the developing chick retina: an early form, Dab1-E, expressed in retinal progenitor cells, and a late form, Dab1 or Dab1-L, expressed in amacrine and ganglion cells. Compared to Dab1-L, Dab1-E lacks two exons that encode two Src family kinase (SFK) phosphorylation sites.


Loss of AP-2delta reduces retinal ganglion cell numbers and axonal projections to the superior colliculus.

  • Xiaodong Li‎ et al.
  • Molecular brain‎
  • 2016‎

AP-2δ is the most divergent member of the Activating Protein-2 (TFAP2) family of transcription factors. AP-2δ is restricted to specific regions of the CNS, including a subset of ganglion cells in the retina. Retinal ganglion cells (RGCs), the only output neurons of the retina, are responsible for transmitting the visual signal to the brain.


The early isoform of disabled-1 functions independently of Reelin-mediated tyrosine phosphorylation in chick retina.

  • Zhihua Gao‎ et al.
  • Molecular and cellular biology‎
  • 2010‎

The Reelin-Disabled-1 (Dab1) signaling pathway plays a key role in the positioning of neurons during brain development. Two alternatively spliced Dab1 isoforms have been identified in chick retina and brain: Dab1-E, expressed at early stages of development, and Dab1-L (commonly referred to as Dab1), expressed at later developmental stages. The well-studied Dab1-L serves as an adaptor protein linking Reelin signal to its downstream effectors; however, nothing is known regarding the role of Dab1-E. Here we show that Dab1-E is primarily expressed in proliferating retinal progenitor cells whereas Dab1-L is found exclusively in differentiated neuronal cells. In contrast to Dab1-L, which is tyrosine phosphorylated upon Reelin stimulation, Dab1-E is not tyrosine phosphorylated and may function independently of Reelin. Knockdown of Dab1-E in chick retina results in a significant reduction in the number of proliferating cells and promotes ganglion cell differentiation. Our results demonstrate a role for Dab1-E in the maintenance of the retinal progenitor pool and determination of cell fate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: