Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Chinese adolescents' coping tactics in a parent-adolescent conflict and their relationships with life satisfaction: the differences between coping with mother and father.

  • Hongyu Zhao‎ et al.
  • Frontiers in psychology‎
  • 2015‎

The present study examined the differences of conflict coping tactics in adolescents' grade and gender and parents' gender and explored the relationships among conflict frequency, conflict coping tactics, and life satisfaction. A total of 1874 Chinese students in grades 7, 8, 10, and 11 completed surveys on conflict frequency, coping tactics, and life satisfaction. The results obtained by MANOVA suggested that the adolescents' reported use of assertion and avoidance with either mothers or fathers increased from Grade 7 to Grade 8 and did not change from Grade 8 to Grade 11 in parent-adolescent conflicts. The results of paired sample T-tests indicated that adolescents used more conciliation in Grade 7, more conciliation and assertion in Grade 8, and more conciliation and less avoidance in Grade 10 and 11 to cope with mothers than with fathers in parent-adolescent conflicts. Boys used more conciliation and less avoidance, while girls used more conciliation, assertion and third-party intervention to cope with mothers than with fathers in parent-adolescent conflicts. The results of the hierarchical regression analysis indicated the significance of the primary effects of conflict frequency and coping tactics on life satisfaction. Specifically, conflict frequency negatively predicted life satisfaction. Conciliation positively and avoidance negatively predicted life satisfaction when adolescents coped with either mothers or fathers in parent-adolescent conflicts. Assertion negatively predicted life satisfaction when adolescents coped with fathers. The moderating effects of conflict coping tactics on the relationship between parent-adolescent conflict frequency and life satisfaction were not significant.


Development of dual-fluorescence cell-based biosensors for detecting the influence of environmental factors on nanoparticle toxicity.

  • Junting Liang‎ et al.
  • Chemosphere‎
  • 2017‎

With the expanding use of engineered nanoparticles (NPs), development of a high-throughput, sensitive method for evaluating NP safety is important. In this study, we developed cell-based biosensors to efficiently and conveniently monitor NP toxicity. The biosensor cells were obtained by transiently transfecting human cells with biosensor plasmids containing a mCherry gene regulated by an inducible promoter [an activator protein 1 (AP-1) promoter, an interleukin 8 (IL8) promoter, or a B cell translocation gene 2 (BTG2) promoter], with an enhanced green-fluorescent protein gene driven by the cytomegalovirus promoter as the internal control. After optimizing flow cytometric analysis, these dual-fluorescence cell-based biosensors were capable of accurately and rapidly detecting NP toxicity. We found that the responses of AP-1, BTG2, and IL8 biosensors in assessing the toxicity of silver nanoparticles (Ag NPs) showed good dose-related increases after exposure to Ag NPs and were consistent with data acquired by conventional assays, such as western blot, real-time polymerase chain reaction, and immunofluorescence. Further investigation of the effects of environmental factors on Ag NP toxicity revealed that aging in water, co-exposure with fulvic acid, and irradiation with ultraviolet A light could affect Ag NP-induced biosensor responses. These results indicated that these novel dual-fluorescence biosensors can be applied to accurately and sensitively monitor NP toxicity.


Isolation and Functional Determination of SKOR Potassium Channel in Purple Osier Willow, Salix purpurea.

  • Yahui Chen‎ et al.
  • International journal of genomics‎
  • 2021‎

Potassium (K+) plays key roles in plant growth and development. However, molecular mechanism studies of K+ nutrition in forest plants are largely rare. In plants, SKOR gene encodes for the outward rectifying Shaker-type K+ channel that is responsible for the long-distance transportation of K+ through xylem in roots. In this study, we determined a Shaker-type K+ channel gene in purple osier (Salix purpurea), designated as SpuSKOR, and determined its function using a patch clamp electrophysiological system. SpuSKOR was closely clustered with poplar PtrSKOR in the phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuSKOR was predominantly expressed in roots, and expression decreased under K+ depletion conditions. Patch clamp analysis via HEK293-T cells demonstrated that the activity of the SpuSKOR channel was activated when the cell membrane voltage reached at -10 mV, and the channel activity was enhanced along with the increase of membrane voltage. Outward currents were recorded and induced in response to the decrease of external K+ concentration. Our results indicate that SpuSKOR is a typical voltage dependent outwardly rectifying K+ channel in purple osier. This study provides theoretical basis for revealing the mechanism of K+ transport and distribution in woody plants.


Transcriptome and Metabonomic Analysis of Tamarix ramosissima Potassium (K+) Channels and Transporters in Response to NaCl Stress.

  • Yahui Chen‎ et al.
  • Genes‎
  • 2022‎

Potassium ion (K+) channels and transporters are key components of plant K+ absorption and transportation and play an important role in plant growth and development. This study revealed that K+ channels and transporters are involved in the salt tolerance molecular mechanism and metabolites of the halophyte representative plant Tamarix ramosissima (T. ramosissima) in response to NaCl stress, providing a theoretical basis for the mitigation of salt stress using halophytes. Through transcriptome sequencing and metabolite detection analysis of 0 h, 48 h and 168 h by applying exogenous K+ to the roots of T. ramosissima under NaCl stress, 15 high-quality Clean Data bases were obtained, Q20 reached more than 97%, Q30 reached more than 92%, and GC content reached 44.5%, which is in line with further bioinformatics analysis. Based on the Liquid chromatography−mass spectrometry (LC-MS) analysis, the roots of T. ramosissima were exposed to exogenous potassium for 48 h and 168 h under NaCl stress, and 1510 and 1124 metabolites were identified in positive and negative ion mode, respectively. Through orthogonal projections to latent structures discriminant analysis (OPLS-DA) model analysis, its metabolomic data have excellent predictability and stability. The results of this study showed that there were 37 differentially expressed genes (DEGs) annotated as Class 2 K+ channels (Shaker-like K+ channel and TPK channel) and Class 3 K+ transporters (HAK/KUP/KT, HKT and CPAs transporter families). Among them, 29 DEGs were annotated to the gene ontology (GO) database, and the most genes were involved in the GO Biological Process. In addition, the expression levels of Unigene0014342 in the HAK/KUP/KT transporter and Unigene0088276 and Unigene0103067 in the CPAs transporter both first decreased and then increased when treated with 200 mM NaCl for 48 h and 168 h. However, when treated with 200 mM NaCl + 10 mM KCl for 48 h and 168 h, a continuous upward trend was shown. Notably, the expression level of Unigene0016813 in CPAS transporter continued to increase when treated with 200 mM NaCl and 200 mM NaCl + 10 mM KCl for 48 h and 168 h. 3 DEGs, Unigene0088276, Unigene0016813 and Unigene0103067, were dominated by the positive regulation of their related metabolites, and this correlation was significant. The results showed that these DEGs increased the absorption of K+ and the ratio of K+/Na+ under NaCl stress at 48 h and 168 h after adding exogenous potassium and enhanced the salt tolerance of T. ramosissima. Notably, the expression level of Unigene0103067 in the CPAs transporter was consistently upregulated when 200 mM NaCl + 10 mM KCl was treated for 48 h and 168 h. The positive regulatory metabolites were always dominant, which better helped T. ramosissima resist salt stress. Unigene0103067 plays an important role in enhancing the salt tolerance of T. ramosissima and reducing the toxicity of NaCl in roots. Additionally, phylogenetic tree analysis showed that Unigene0103067 and Reaumuria trigyna had the closest genetic distance in the evolutionary relationship. Finally, 9 DEGs were randomly selected for quantitative real-time PCR (qRT-PCR) verification. Their expression trends were completely consistent with the transcriptome sequencing analysis results, proving that this study’s data are accurate and reliable. This study provides resources for revealing the molecular mechanism of NaCl stress tolerance in T. ramosissima and lays a theoretical foundation for cultivating new salt-tolerant varieties.


Perinatal tissue-derived exosomes ameliorate colitis in mice by regulating the Foxp3 + Treg cells and gut microbiota.

  • Yaping Yan‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

The capacity of self-renewal and multipotent differentiation makes mesenchymal stem cells (MSC) one of the most widely investigated cell lines in preclinical studies as cell-based therapies. However, the low survival rate and poor homing efficiency of MSCs after transplantation hinder the therapeutic application. Exosomes derived from MSCs have shown promising therapeutic potential in many diseases. However, the heterogeneity of MSCs may lead to differences in the function of secreting exosomes. In this study, the therapeutic effects of hUC-Exos and hFP-Exos on the DSS-induced colitis mouse model were investigated.


Differential motility parameters and identification of proteomic profiles of human sperm cryopreserved with cryostraw and cryovial.

  • Shanshan Li‎ et al.
  • Clinical proteomics‎
  • 2019‎

Although sperm cryopreservation has been widely used in human reproductive medicine as an integral infertility management in infertility clinics and for banking sperm in sperm banks, the freezing/thawing protocols are not optimal. The freezing and thawing processes result in changes at both structural and molecular levels, some even detrimental, in human sperm when compared with fresh sperm. The change of sperm proteins after cryopreservation may play negative roles for fertilization and early embryo development. Conventionally, cryostraws (CS) and cryovials (CV) are the most widely used cryopreservation carriers (CPCs) for human sperm cryopreservation accompanied with the use of egg yolk free commercial media. However, the influence of cryopreservation on the proteomic profile of human sperm preserved with the two CPCs is unknown. Therefore the purpose of the present study was to compare the frozen-thawed motility, investigate the proteomic profile of human sperm cryopreserved with the two types of CPCs, and identify the susceptible proteins that play key roles for sperm function and fertility.


Application of thromboelastography to evaluate the effect of different routes administration of tranexamic acid on coagulation function in total hip arthroplasty.

  • Xingming Xu‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2019‎

Tranexamic acid (TXA) is widely used to reduce blood loss and transfusion rates in total hip arthroplasty(THA). Thromboelastography, which can monitor coagulation changes from clotting to fibrinolysis dynamically. In this study, thromboelastography was used to assess the dynamic changes in the coagulation of patients who underwent THA with the administration of TXA.


FOXC1 Negatively Regulates DKK1 Expression to Promote Gastric Cancer Cell Proliferation Through Activation of Wnt Signaling Pathway.

  • Jiang Jiang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Gastric cancer (GC), characterized by uncontrolled growth, is a common malignant tumor of the digestive system. The Wnt signaling pathway plays an important role in the tumorigenesis and proliferation of GC. Many studies on this signaling pathway have focused on its intracellular regulatory mechanism, whereas little attention has been given to extracellular regulatory factors. Dickkopf-1 (Dkk1) is a secretory glycoprotein, and it can bind inhibit activation of the Wnt pathway. However, the regulation and mechanism of DKK1 in the proliferation of GC remain unclear. FOXC1 plays an important role in organ development and tumor growth, but its role in GC tumor growth remains unknown. In this study, we found that the FOXC1 is highly expressed in patients with GC and high expression of FOXC1 correlates to poor prognosis. In addition, we found that the Wnt signaling pathway in GC cells with high FOXC1 expression was strongly activated. FOXC1 negatively regulates DKK1 expression by binding to its promoter region, thereby promoting the activation of Wnt pathway. FOXC1 can also form a complex with unphosphorylated β-catenin protein in the cytoplasm and then dissociates from β-catenin in the nucleus, thereby promoting the entry of β-catenin into the nucleus and regulating expression of c-MYC, which promotes the proliferation of GC cells. Our study not only reveals the function and mechanism of FOXC1 in GC, but also provides a potential target for clinic GC treatment.


Panoramic Endocardial Optical Mapping Demonstrates Serial Rotors Acceleration and Increasing Complexity of Activity During Onset of Cholinergic Atrial Fibrillation.

  • Óscar Salvador-Montañés‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Activation during onset of atrial fibrillation is poorly understood. We aimed at developing a panoramic optical mapping system for the atria and test the hypothesis that sequential rotors underlie acceleration of atrial fibrillation during onset. Methods and Results Five sheep hearts were Langendorff perfused in the presence of 0.25 µmol/L carbachol. Novel optical system recorded activations simultaneously from the entire left and right atrial endocardial surfaces. Twenty sustained (>40 s) atrial fibrillation episodes were induced by a train and premature stimuli protocol. Movies obtained immediately (Initiation stage) and 30 s (Early Stabilization stage) after premature stimulus were analyzed. Serial rotor formation was observed in all sustained inductions and none in nonsustained inductions. In sustained episodes maximal dominant frequency increased from (mean±SD) 11.5±1.74 Hz during Initiation to 14.79±1.30 Hz at Early Stabilization (P<0.0001) and stabilized thereafter. At rotor sites, mean cycle length (CL) during 10 prerotor activations increased every cycle by 0.53% (P=0.0303) during Initiation and 0.34% (P=0.0003) during Early Stabilization. In contrast, CLs at rotor sites showed abrupt decreases after the rotors appearances by a mean of 9.65% (P<0.0001) during both stages. At Initiation, atria-wide accelerations and decelerations during rotors showed a net acceleration result whereby post-rotors atria-wide minimal CL (CLmin) were 95.5±6.8% of the prerotor CLmin (P=0.0042). In contrast, during Early Stabilization, there was no net acceleration in CLmin during accelerating rotors (prerotor=84.9±11.0% versus postrotor=85.8±10.8% of Initiation, P=0.4029). Levels of rotor drift distance and velocity correlated with atria-wide acceleration. Nonrotor phase singularity points did not accelerate atria-wide activation but multiplied during Initiation until Early Stabilization. Increasing number of singularity points, indicating increased complexity, correlated with atria-wide CLmin reduction (P<0.0001). Conclusions Novel panoramic optical mapping of the atria demonstrates shortening CL at rotor sites during cholinergic atrial fibrillation onset. Atrial fibrillation acceleration toward Early Stabilization correlates with the net result of atria-wide accelerations during drifting rotors activity.


Metagenomic insights into the composition and function of the gut microbiota of mice infected with Toxoplasma gondii.

  • Jin-Xin Meng‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Despite Toxoplasma gondii infection leading to dysbiosis and enteritis, the function of gut microbiota in toxoplasmosis has not been explored.


Unveiling the role of hypoxic macrophage-derived exosomes in driving colorectal cancer progression.

  • Jiang Jiang‎ et al.
  • Frontiers in immunology‎
  • 2023‎

The crosstalk between tumor cells and macrophages under hypoxic conditions has been acknowledged as a pivotal determinant in the progression of colorectal cancer (CRC). Previous research has underscored the significance of exosomes derived from hypoxic tumor cells in facilitating tumor progression through inducing the polarization of macrophages towards the M2-like phenotype. The precise influence of hypoxic macrophage-derived exosomes (HMDEs) on the progression of CRC has not yet been fully elucidated. The objective of this study was to investigate the role of HMDEs in the progression of CRC. We discovered that there was an elevated release of exosomes derived from macrophages in hypoxic conditions. Additionally, the hypoxia-induced macrophage-derived exosomes played a crucial role in promoting the progression of CRC. We have also demonstrated that HMDEs have the ability to induce cell cycle transition and inhibit cell apoptosis, thereby promoting the growth of CRC cells. Furthermore, the underlying molecular mechanisms of these effects have been identified. The overexpression of Hif-1α results in its direct interaction with distinct regions (-521- -516 bp and -401- -391 bp) of the Hsp90 promoter during hypoxic circumstances. This binding event led to the overexpression of Hsp90 and the subsequent elevation of Hsp90 protein levels within HMDEs. Importantly, the crucial interaction between Hsp90 and Lats1 resulted in the deactivation of Lats1 and the inhibition of Yap phosphorylation. Ultimately, this series of events lead to the deactivation of the Hippo signaling pathway. Our in vivo and in vitro studies presented compelling evidence for the crucial role of hypoxic macrophage-derived exosomal Hsp90 in promoting CRC progression through the inhibition of the Hippo signaling pathway. These findings represented a significant advancement in our comprehension of the complex interplay between macrophages and CRC cells under hypoxic conditions.


Detection of kinematic abnormalities in persons with knee osteoarthritis using markerless motion capture during functional movement screen and daily activities.

  • Fei Wang‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2024‎

Background: The functional movement screen (FMS) has been used to identify deficiencies in neuromuscular capabilities and balance among athletes. However, its effectiveness in detecting movement anomalies within the population afflicted by knee osteoarthritis (KOA), particularly through the application of a family-oriented objective assessment technique, remains unexplored. The objective of this study is to investigate the sensitivity of the FMS and daily activities in identifying kinematic abnormalities in KOA people employing a markerless motion capture system. Methods: A total of 45 persons, presenting various Kellgren-Lawrence grades of KOA, along with 15 healthy controls, completed five tasks of the FMS (deep squat, hurdle step, and in-line lunge) and daily activities (walking and sit-to-stand), which were recorded using the markerless motion capture system. The kinematic waveforms and discrete parameters were subjected to comparative analysis. Results: Notably, the FMS exhibited greater sensitivity compared to daily activities, with knee flexion, trunk sagittal, and trunk frontal angles during in-line lunge emerging as the most responsive indicators. Conclusion: The knee flexion, trunk sagittal, and trunk frontal angles during in-line lunge assessed via the markerless motion capture technique hold promise as potential indicators for the objective assessment of KOA.


Partial Removal of Phenolics Coupled with Alkaline pH Shift Improves Canola Protein Interfacial Properties and Emulsion in In Vitro Digestibility.

  • Jiang Jiang‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

The effect of polyphenol removal ("dephenol") combined with an alkaline pH shift treatment on the O/W interfacial and emulsifying properties of canola seed protein isolate (CPI) was investigated. Canola seed flour was subjected to solvent extraction to remove phenolic compounds, from which prepared CPI was exposed to a pH12 shift to modify the protein structure. Dephenoled CPI had a light color when compared with an intense dark color for the control CPI. Up to 53% of phenolics were removed from the CPI after the extraction with 70% ethanol. Dephenoled CPI showed a partially unfolded structure and increased surface hydrophobicity and solubility. The particle size increased slightly, indicating that soluble protein aggregates formed after the phenol removal. The pH12 shift induced further unfolding and decreased protein particle size. Dephenoled CPI had a reduced β subunit content but an enrichment of disulfide-linked oligopeptides. Dephenol improved the interfacial rheology and emulsifying properties of CPI. Although phenol removal did not promote peptic digestion and lipolysis, it facilitated tryptic disruption of the emulsion particles due to enhanced proteolysis. In summary, dephenol accentuated the effect of the pH shift to improve the overall emulsifying properties of CPI and emulsion in in vitro digestion.


Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone) Nanofibrous Polymer Films.

  • Yang Gao‎ et al.
  • Scientific reports‎
  • 2017‎

Electronics, which functions for a designed time period and then degrades or destructs, holds promise in medical implants, reconfigurable electronic devices and/or temporary functional systems. Here we report a thermally triggered mechanically destructive device, which is constructed with an ultra-thin electronic components supported by an electrospun poly(ε-caprolactone) nanofibrous polymer substrate. Upon heated over the melting temperature of the polymer, the pores of the nanofibers collapse due to the nanofibers' microscopic polymer chain relaxing and packing. As a result, the polymer substrate exhibits approximately 97.5% area reduction. Ultra-thin electronic components can therefore be destructed concurrently. Furthermore, by integrating a thin resistive heater as the thermal trigger of Joule heating, the device is able to on-demand destruct. The experiment and analytical results illustrate the essential aspects and theoretical understanding for the thermally triggered mechanical destructive devices. The strategy suggests a viable route for designing destructive electronics.


miR‑199a‑3p suppresses cervical epithelial cell inflammation by inhibiting the HMGB1/TLR4/NF‑κB pathway in preterm birth.

  • Juan Peng‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Preterm birth (PTB) is the primary cause of neonatal mortality worldwide. Infection and inflammation are considered to be the primary causes of PTB. Cervical remodeling is an important step in the process of preterm delivery, and the destruction of the cervical epithelial barrier and inflammation are important triggers of cervical remodeling. The aim of the present study was to determine the effect and underlying mechanism of microRNA (miR)‑199a‑3p/high‑mobility group box 1 protein (HMGB1) signaling in cervical epithelial inflammation in PTB. The results of this study revealed that miR‑199a‑3p was significantly decreased in cervical epithelial tissue samples from patients in both the preterm labor and preterm premature rupture of membrane groups. This decrease was also observed in tissue samples from a lipopolysaccharide (LPS)‑induced PTB mouse model and in LPS‑induced ectocervical and endocervical cells. Whereas, the expression of HMGB1 and toll‑like receptor 4 (TLR4) was significantly increased, which was associated with the upregulation of interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α expression. Furthermore, overexpression of miR‑199a‑3p significantly suppressed the expression and activation of HMGB1 and TLR4/NF‑κB signaling, and decreased the levels of IL‑1β and TNF‑α in vitro and in vivo. Additionally, overexpression of HMGB1 and/or TLR4 reversed the anti‑inflammatory effects of miR‑199a‑3p mimics in vitro and in vivo. These results indicate that miR‑199a‑3p acts as a negative inflammatory regulator in PTB by targeting HMGB1 to regulate the TLR4/NF‑κB pathway.


Platelet ITGA2B inhibits caspase-8 and Rip3/Mlkl-dependent platelet death though PTPN6 during sepsis.

  • Jiang Jiang‎ et al.
  • iScience‎
  • 2023‎

Platelets play an important role in the pathogenesis of sepsis and platelet transfusion is a therapeutic option for sepsis patients, although the exact mechanisms have not been elucidated so far. ITGA2B encodes the αIIb protein in platelets, and its upregulation in sepsis is associated with increased mortality rate. Here, we generated a Itga2b (Q887X) knockin mouse, which significantly reduced ITGA2B expression of platelet and megakaryocyte. The decrease of ITGA2B level aggravated the death of septic mice. We analyzed the transcriptomic profiles of the platelets using RNA sequencing. Our findings suggest that ITGA2B upregulates PTPN6 in megakaryocytes via the transcription factors Nfkb1 and Rel. Furthermore, PTPN6 inhibits platelet apoptosis and necroptosis during sepsis by targeting the Ripk1/Ripk3/Mlkl and caspase-8 pathways. This prevents Kupffer cells from rapidly clearing activated platelets, and eventually maintains vascular integrity during sepsis. Our findings indicate a new function of ITGA2B in the regulation of platelet death during sepsis.


hiPSC-CM Monolayer Maturation State Determines Drug Responsiveness in High Throughput Pro-Arrhythmia Screen.

  • André Monteiro da Rocha‎ et al.
  • Scientific reports‎
  • 2017‎

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) offer a novel in vitro platform for pre-clinical cardiotoxicity and pro-arrhythmia screening of drugs in development. To date hiPSC-CMs used for cardiotoxicity testing display an immature, fetal-like cardiomyocyte structural and electrophysiological phenotype which has called into question the applicability of hiPSC-CM findings to the adult heart. The aim of the current work was to determine the effect of cardiomyocyte maturation state on hiPSC-CM drug responsiveness. To this end, here we developed a high content pro-arrhythmia screening platform consisting of either fetal-like or mature hiPSC-CM monolayers. Compounds tested in the screen were selected based on the pro-arrhythmia risk classification (Low risk, Intermediate risk, or High risk) established recently by the FDA and major stakeholders in the Drug Discovery field for the validation of the Comprehensive In vitro Pro-Arrhythmia Assay (CiPA). Here we show that maturation state of hiPSC-CMs determines the absolute pro-arrhythmia risk score calculated for these compounds. Thus, the maturation state of hiPSC-CMs should be considered prior to pro-arrhythmia and cardiotoxicity screening in drug discovery programs.


Correlational analysis between neutrophil granulocyte levels and osteonecrosis of the femoral head.

  • Jiang Jiang‎ et al.
  • BMC musculoskeletal disorders‎
  • 2019‎

The correlation between peripheral blood neutrophil level and osteonecrosis of the femoral head (ONFH) has not been extensively studied. Thus, we aimed to investigate the correlation between neutrophil level in the peripheral blood (neutrophil granulocyte) and ONFH.


Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells.

  • Xufeng Fu‎ et al.
  • Clinical proteomics‎
  • 2020‎

Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications, large scale production is required and optimal cryopreservation and culture conditions are essential to autologous and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term culture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological characteristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated.


Molecular, structural and biochemical characterization of a novel recombinant chlorophyllase from cyanobacterium Oscillatoria acuminata PCC 6304.

  • Sitian Gu‎ et al.
  • Microbial cell factories‎
  • 2021‎

Chlorophyllase catalyzes the hydrolysis of chlorophyll and produces chlorophyllide and phytol. Cyanobacterial chlorophyllases are likely to be more highly heterologously expressed than plant chlorophyllases. A novel recombinant chlorophyllase from the cyanobacterium Oscillatoria acuminata PCC 6304 was successfully expressed in Escherichia coli BL21(DE3).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: