Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish.

  • Dapeng Zhang‎ et al.
  • PloS one‎
  • 2009‎

Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted.


The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications.

  • A Maxwell Burroughs‎ et al.
  • Biology direct‎
  • 2015‎

Deciphering the origin of uniquely eukaryotic features of sub-cellular systems, such as the translation apparatus, is critical in reconstructing eukaryogenesis. One such feature is the highly conserved, but poorly understood, eukaryotic protein CDC123, which regulates the abundance of the eukaryotic translation initiation eIF2 complex and binds one of its components eIF2γ. We show that the eukaryotic protein CDC123 defines a novel clade of ATP-grasp enzymes distinguished from all other members of the superfamily by a RAGNYA domain with two conserved lysines (henceforth the R2K clade). Combining the available biochemical and genetic data on CDC123 with the inferred enzymatic function, we propose that the eukaryotic CDC123 proteins are likely to function as ATP-dependent protein-peptide ligases which modify proteins by ribosome-independent addition of an oligopeptide tag. We also show that the CDC123 family emerged first in bacteria where it appears to have diversified along with the two other families of the R2K clade. The bacterial CDC123 family members are of two distinct types, one found as part of type VI secretion systems which deliver polymorphic toxins and the other functioning as potential effectors delivered to amoeboid eukaryotic hosts. Representatives of the latter type have also been independently transferred to phylogenetically unrelated amoeboid eukaryotes and their nucleo-cytoplasmic large DNA viruses. Similarly, the two other prokaryotic R2K clade families are also proposed to participate in biological conflicts between bacteriophages and their hosts. These findings add further evidence to the recently proposed hypothesis that the horizontal transfer of enzymatic effectors from the bacterial endosymbionts of the stem eukaryotes played a fundamental role in the emergence of the characteristically eukaryotic regulatory systems and sub-cellular structures.


Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress.

  • Lin Zhou‎ et al.
  • Horticulture research‎
  • 2014‎

Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluation of effects of exogenous ABA on the leaf proteome in tea plant exposed to drought stress. Leaf protein patterns of tea plants under simulated drought stress [(polyethylene glycol (PEG)-treated] and exogenous ABA treatment were analyzed in a time-course experiment using two-dimensional electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Among the 72 protein spots identified by MALDI-TOF MS, 16 proteins were downregulated and two were upregulated by exogenous ABA. The upregulated proteins have roles in glycolysis and photosystem II stabilization. Twenty-one protein spots were responsive to drought stress and most participate in carbohydrate and nitrogen metabolism, control of reactive oxygen species (ROS), defense, signaling or nucleic acid metabolism. The combined treatments of exogenous ABA and drought showed upregulation of 10 protein spots at 12 h and upregulation of 11 proteins at 72 h after initiation of drought stress. The results support the importance of the role that ABA plays in the tea plant during drought stress, by improving protein transport, carbon metabolism and expression of resistance proteins.


Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution.

  • Elena Albrecht‎ et al.
  • BMC genetics‎
  • 2012‎

The exotic pepper species Capsicum baccatum, also known as the aji or Peruvian hot pepper, is comprised of wild and domesticated botanical forms. The species is a valuable source of new genes useful for improving fruit quality and disease resistance in C. annuum sweet bell and hot chile pepper. However, relatively little research has been conducted to characterize the species, thus limiting its utilization. The structure of genetic diversity in a plant germplasm collection is significantly influenced by its ecogeographical distribution. Together with DNA fingerprints derived from AFLP markers, we evaluated variation in fruit and plant morphology of plants collected across the species native range in South America and evaluated these characters in combination with the unique geography, climate and ecology at different sites where plants originated.


Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

  • Lin Zhou‎ et al.
  • Horticulture research‎
  • 2015‎

Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.


Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling.

  • A Maxwell Burroughs‎ et al.
  • Nucleic acids research‎
  • 2015‎

Cyclic di- and linear oligo-nucleotide signals activate defenses against invasive nucleic acids in animal immunity; however, their evolutionary antecedents are poorly understood. Using comparative genomics, sequence and structure analysis, we uncovered a vast network of systems defined by conserved prokaryotic gene-neighborhoods, which encode enzymes generating such nucleotides or alternatively processing them to yield potential signaling molecules. The nucleotide-generating enzymes include several clades of the DNA-polymerase β-like superfamily (including Vibrio cholerae DncV), a minimal version of the CRISPR polymerase and DisA-like cyclic-di-AMP synthetases. Nucleotide-binding/processing domains include TIR domains and members of a superfamily prototyped by Smf/DprA proteins and base (cytokinin)-releasing LOG enzymes. They are combined in conserved gene-neighborhoods with genes for a plethora of protein superfamilies, which we predict to function as nucleotide-sensors and effectors targeting nucleic acids, proteins or membranes (pore-forming agents). These systems are sometimes combined with other biological conflict-systems such as restriction-modification and CRISPR/Cas. Interestingly, several are coupled in mutually exclusive neighborhoods with either a prokaryotic ubiquitin-system or a HORMA domain-PCH2-like AAA+ ATPase dyad. The latter are potential precursors of equivalent proteins in eukaryotic chromosome dynamics. Further, components from these nucleotide-centric systems have been utilized in several other systems including a novel diversity-generating system with a reverse transcriptase. We also found the Smf/DprA/LOG domain from these systems to be recruited as a predicted nucleotide-binding domain in eukaryotic TRPM channels. These findings point to evolutionary and mechanistic links, which bring together CRISPR/Cas, animal interferon-induced immunity, and several other systems that combine nucleic-acid-sensing and nucleotide-dependent signaling.


Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci.

  • Fang He‎ et al.
  • Neurology. Genetics‎
  • 2016‎

To determine whether GGGGCC (G4C2) repeat expansions at loci other than C9orf72 serve as common causes of amyotrophic lateral sclerosis (ALS).


Gene flow and biological conflict systems in the origin and evolution of eukaryotes.

  • L Aravind‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2012‎

The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary "nurseries" for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.


Schisandra A ameliorates cigarette smoke extract and lipopolysaccharide-induced oxidative stress in lung epithelial cells.

  • Dapeng Zhang‎ et al.
  • Journal of thoracic disease‎
  • 2020‎

The previous studies reported the antioxidant and anti-inflammatory properties of Schisandrin A (Sch A). This study aimed to investigate the ability of Sch A to protect against lung oxidative stress induced by the combination of cigarette smoke extract and lipopolysaccharide (LPS) in an in vitro model of chronic obstructive pulmonary disease (COPD).


miR-138-5p inhibits the malignant progression of prostate cancer by targeting FOXC1.

  • Dapeng Zhang‎ et al.
  • Cancer cell international‎
  • 2020‎

This study aimed to uncover the effect of miR-138-5p on the proliferation and metastasis of PCa cell lines, and further explore the potential regulatory mechanisms via regulating FOXC1.


Comparative Phylogenomic Analysis Reveals Evolutionary Genomic Changes and Novel Toxin Families in Endophytic Liberibacter Pathogens.

  • Yongjun Tan‎ et al.
  • Microbiology spectrum‎
  • 2021‎

Liberibacter pathogens are the causative agents of several severe crop diseases worldwide, including citrus Huanglongbing and potato zebra chip. These bacteria are endophytic and nonculturable, which makes experimental approaches challenging and highlights the need for bioinformatic analysis in advancing our understanding about Liberibacter pathogenesis. Here, we performed an in-depth comparative phylogenomic analysis of the Liberibacter pathogens and their free-living, nonpathogenic, ancestral species, aiming to identify major genomic changes and determinants associated with their evolutionary transitions in living habitats and pathogenicity. Using gene neighborhood analysis and phylogenetic classification, we systematically uncovered, annotated, and classified all prophage loci into four types, including one previously unrecognized group. We showed that these prophages originated through independent gene transfers at different evolutionary stages of Liberibacter and only the SC-type prophage was associated with the emergence of the pathogens. Using ortholog clustering, we vigorously identified two additional sets of genomic genes, which were either lost or gained in the ancestor of the pathogens. Consistent with the habitat change, the lost genes were enriched for biosynthesis of cellular building blocks. Importantly, among the gained genes, we uncovered several previously unrecognized toxins, including new toxins homologous to the EspG/VirA effectors, a YdjM phospholipase toxin, and a secreted endonuclease/exonuclease/phosphatase (EEP) protein. Our results substantially extend the knowledge of the evolutionary events and potential determinants leading to the emergence of endophytic, pathogenic Liberibacter species, which will facilitate the design of functional experiments and the development of new methods for detection and blockage of these pathogens. IMPORTANCELiberibacter pathogens are associated with several severe crop diseases, including citrus Huanglongbing, the most destructive disease to the citrus industry. Currently, no effective cure or treatments are available, and no resistant citrus variety has been found. The fact that these obligate endophytic pathogens are not culturable has made it extremely challenging to experimentally uncover the genes/proteins important to Liberibacter pathogenesis. Further, earlier bioinformatics studies failed to identify key genomic determinants, such as toxins and effector proteins, that underlie the pathogenicity of the bacteria. In this study, an in-depth comparative genomic analysis of Liberibacter pathogens along with their ancestral nonpathogenic species identified the prophage loci and several novel toxins that are evolutionarily associated with the emergence of the pathogens. These results shed new light on the disease mechanism of Liberibacter pathogens and will facilitate the development of new detection and blockage methods targeting the toxins.


Abscisic Acid Improves Linoleic Acid Accumulation Possibly by Promoting Expression of EgFAD2 and Other Fatty Acid Biosynthesis Genes in Oil Palm Mesocarp.

  • Peng Shi‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Abscisic acid plays an important role in fruit development. However, the effect of ABA on fatty acid biosynthesis in oil palm is still unknown. In this study, ABA treatments (CK, A1-A4) were applied to oil palm fruit at 16 WAP (weeks after pollination), and fatty acids in the mesocarp at 24 WAP were analyzed by GC-MS. Results showed that linoleic acid content under treatment A2 (20 μM ABA) was significantly higher (slightly increased by 8.33%) than the control. Therefore, mesocarp samples of A2, and the control at 16, 20, and 24 WAP was sampled for RNA-Seq. KEGG pathway enrichment analysis showed that 43 genes were differentially expressed in the fatty acid biosynthesis pathway, of which expression of EgFAD2 (unigene 105050201) under 20 μM ABA treatment was 1.84-fold higher than in the control at 20 WAP. Further sequence analysis found that unigene 105050201 had more ABA-responsive elements (ABRE), complete conserved domains, and a C-terminal signaling motif among two FAD2 copies. Furthermore, WGCNA and correlation analysis showed co-expression of EgFAD2 (unigene 105050201) with transcription factors (TFs) (WRI1, AP2-EREBP, bZIP, bHLH, C2C2-Dof, MYB, NAC, and WRKY), ABA signaling genes (PYR, PP2C, SnRK, and ABI5), and other genes involved in fatty acid biosynthesis (FATA, FATB, LACS, SAD, Oleosins, and so on). These results indicated that ABA treatment promoted the expression of FAD2 and other genes involved in fatty acid biosynthesis, which possibly resulted in the accumulation of linoleic acid. This study will be helpful for understanding the possible mechanisms through which ABA affects fatty acid biosynthesis and their accumulation in the mesocarp of oil palm.


Schisandrin A regulates the Nrf2 signaling pathway and inhibits NLRP3 inflammasome activation to interfere with pyroptosis in a mouse model of COPD.

  • Jiamin Zeng‎ et al.
  • European journal of medical research‎
  • 2023‎

Chronic obstructive pulmonary disease (COPD) is a serious chronic lung disease. Schisandrin A (SchA) is one of the most important active ingredients in Schisandra chinensis and has been used to treat various lung diseases in several countries. Here, we studied the pharmacological effect of SchA on airway inflammation induced by cigarette smoke (CS) and explored the therapeutic mechanism of SchA in COPD model mice. Our results showed that SchA treatment significantly improved the lung function of CS-induced COPD model mice and reduced the recruitment of leukocytes and hypersecretion of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in bronchoalveolar lavage fluid (BALF). H&E staining showed that SchA treatment could effectively reduce emphysema, immune cell infiltration and airway wall destruction. In addition, we found that SchA treatment can stimulate the expression of heme oxygenase-1 (HO-1) through the nuclear factor-erythroid 2-related factor (Nrf2) pathway, significantly reduce oxidative stress, increase catalase (CAT) and superoxide dismutase (SOD) levels, and suppress the level of malondialdehyde (MDA) in COPD model mice. Moreover, SchA treatment suppressed the generation of the NLRP3/ASC/Caspase1 inflammasome complex to inhibit the inflammatory response caused by IL-1β and IL-18 and pyroptosis caused by GSDMD. In conclusion, our study shows that SchA treatment can inhibit the production of ROS and the activation of the NLRP3 inflammasome by upregulating Nrf-2, thereby producing anti-inflammatory effects and reducing lung injury in COPD model mice. More importantly, SchA exhibited similar anti-inflammatory effects to dexamethasone in COPD model mice, and we did not observe substantial side effects of SchA treatment. The high safety of SchA makes it a potential candidate drug for the treatment of COPD.


Social status regulates the hepatic miRNAome in rainbow trout: Implications for posttranscriptional regulation of metabolic pathways.

  • Daniel J Kostyniuk‎ et al.
  • PloS one‎
  • 2019‎

Juvenile rainbow trout develop social hierarchies when held in dyads, and the development of socially subordinate (SS) and social dominance (SD) phenotypes in this context has been linked to specific changes in the hepatic energy metabolism of all major macronutrients. Following our recently reported finding that transcript abundance of drosha, a key component of the microRNA (miRNA) biogenesis pathway, is increased in paired juvenile rainbow trout irrespective of social status compared to socially isolated (SI) controls, we here determined global changes of the hepatic miRNA pathway genes in detail at the transcript and protein level. Both SD and SS rainbow trout exhibited increased Ago2 protein abundance compared to SI rainbow trout, suggesting that hepatic miRNA function is increased in rainbow trout maintained in dyads. Given the well-described differences in hepatic intermediary metabolism between SD and SS rainbow trout, and the important role of miRNAs in the posttranscriptional regulation of metabolic pathways, we also identified changes in hepatic miRNA abundance between SS and SD rainbow trout using small RNA next generation sequencing. We identified a total of 24 differentially regulated miRNAs, with 15 miRNAs that exhibited increased expression, and 9 miRNAs that exhibited decreased expression in the liver of SS trout compared to SD trout. To identify potential miRNA-dependent posttranscriptional regulatory pathways important for social status-dependent regulation of hepatic metabolism in rainbow trout, we used an in silico miRNA target prediction and pathway enrichment approach. We identified enrichment for pathways related to metabolism of carbohydrates, lipids and proteins in addition to organelle-specific processes involved in energy metabolism, especially mitochondrial fusion and fission. Select predicted miRNA-mRNA target pairs within these categories were quantitatively analyzed by real-time RT-PCR to validate candidates for future studies that will probe the functional metabolic roles of specific hepatic miRNAs in the development of SD and SS metabolic phenotypes.


A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems.

  • Dapeng Zhang‎ et al.
  • Nucleic acids research‎
  • 2011‎

The use of nucleases as toxins for defense, offense or addiction of selfish elements is widely encountered across all life forms. Using sensitive sequence profile analysis methods, we characterize a novel superfamily (the SUKH superfamily) that unites a diverse group of proteins including Smi1/Knr4, PGs2, FBXO3, SKIP16, Syd, herpesviral US22, IRS1 and TRS1, and their bacterial homologs. Using contextual analysis we present evidence that the bacterial members of this superfamily are potential immunity proteins for a variety of toxin systems that also include the recently characterized contact-dependent inhibition (CDI) systems of proteobacteria. By analyzing the toxin proteins encoded in the neighborhood of the SUKH superfamily we predict that they possess domains belonging to diverse nuclease and nucleic acid deaminase families. These include at least eight distinct types of DNases belonging to HNH/EndoVII- and restriction endonuclease-fold, and RNases of the EndoU-like and colicin E3-like cytotoxic RNases-folds. The N-terminal domains of these toxins indicate that they are extruded by several distinct secretory mechanisms such as the two-partner system (shared with the CDI systems) in proteobacteria, ESAT-6/WXG-like ATP-dependent secretory systems in Gram-positive bacteria and the conventional Sec-dependent system in several bacterial lineages. The hedgehog-intein domain might also release a subset of toxic nuclease domains through auto-proteolytic action. Unlike classical colicin-like nuclease toxins, the overwhelming majority of toxin systems with the SUKH superfamily is chromosomally encoded and appears to have diversified through a recombination process combining different C-terminal nuclease domains to N-terminal secretion-related domains. Across the bacterial superkingdom these systems might participate in discriminating `self' or kin from `non-self' or non-kin strains. Using structural analysis we demonstrate that the SUKH domain possesses a versatile scaffold that can be used to bind a wide range of protein partners. In eukaryotes it appears to have been recruited as an adaptor to regulate modification of proteins by ubiquitination or polyglutamylation. Similarly, another widespread immunity protein from these toxin systems, namely the suppressor of fused (SuFu) superfamily has been recruited for comparable roles in eukaryotes. In animal DNA viruses, such as herpesviruses, poxviruses, iridoviruses and adenoviruses, the ability of the SUKH domain to bind diverse targets has been deployed to counter diverse anti-viral responses by interacting with specific host proteins.


Structure basis for the unique specificity of medaka enteropeptidase light chain.

  • Jin Xu‎ et al.
  • Protein & cell‎
  • 2014‎

No abstract available


Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways.

  • Li Zeng‎ et al.
  • PloS one‎
  • 2018‎

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene which encodes the deubiquitinating enzyme, ATXN3. Several mechanisms have been proposed to explain the pathogenic role of mutant, polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating gene expression, we compared transcriptional profiles in WT versus Atxn3 null mouse embryonic fibroblasts. Differentially expressed genes in the absence of ATXN3 contribute to multiple signal transduction pathways, suggesting a status switch of signaling pathways including depressed Wnt and BMP4 pathways and elevated growth factor pathways such as Prolactin, TGF-β, and Ephrin pathways. The Eph receptor A3 (Efna3), a receptor protein-tyrosine kinase in the Ephrin pathway that is highly expressed in the nervous system, was the most differentially upregulated gene in Atxn3 null MEFs. This increased expression of Efna3 was recapitulated in Atxn3 knockout mouse brainstem, a selectively vulnerable brain region in SCA3. Overexpression of normal or expanded ATXN3 was sufficient to repress Efna3 expression, supporting a role for ATXN3 in regulating Ephrin signaling. We further show that, in the absence of ATXN3, Efna3 upregulation is associated with hyperacetylation of histones H3 and H4 at the Efna3 promoter, which in turn is induced by decreased levels of HDAC3 and NCoR in ATXN3 null cells. Together, these results reveal a normal role for ATXN3 in transcriptional regulation of multiple signaling pathways of potential relevance to disease processes in SCA3.


Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers.

  • Wan-Ping Fang‎ et al.
  • Horticulture research‎
  • 2014‎

Apart from water, tea is the world's most widely consumed beverage. Tea is produced in more than 50 countries with an annual production of approximately 4.7 million tons. The market segment for specialty tea has been expanding rapidly owing to increased demand, resulting in higher revenues and profits for tea growers and the industry. Accurate varietal identification is critically important to ensure traceability and authentication of premium tea products, which in turn contribute to on-farm conservation of tea genetic diversity. Using a set of single nucleotide polymorphism (SNP) markers developed from the expressed sequence tag (EST) database of Camilla senensis, we genotyped deoxyribonucleic acid (DNA) samples extracted from a diverse group of tea varieties, including both fresh and processed commercial loose-leaf teas. The validation led to the designation of 60 SNPs that unambiguously identified all 40 tested tea varieties with high statistical rigor (p<0.0001). Varietal authenticity and genetic relationships among the analyzed cultivars were further characterized by ordination and Bayesian clustering analysis. These SNP markers, in combination with a high-throughput genotyping protocol, effectively established and verified specific DNA fingerprints for all tested tea varieties. This method provides a powerful tool for variety authentication and quality control for the tea industry. It is also highly useful for the management of tea genetic resources and breeding, where accurate and efficient genotype identification is essential.


Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts.

  • A Maxwell Burroughs‎ et al.
  • Cell cycle (Georgetown, Tex.)‎
  • 2017‎

The HU superfamily of proteins, with a unique DNA-binding mode, has been extensively studied as the primary chromosome-packaging protein of the bacterial superkingdom. Representatives also play a role in DNA-structuring during recombination events and in eukaryotic organellar genome maintenance. However, beyond these well-studied roles, little is understood of the functional diversification of this large superfamily. Using sensitive sequence and structure analysis methods we identify multiple novel clades of the HU superfamily. We present evidence that a novel eukaryotic clade prototyped by the human CCDC81 protein acquired roles beyond DNA-binding, likely in protein-protein interaction in centrosome organization and as a potential cargo-binding protein in conjunction with Dynein-VII. We also show that these eukaryotic versions were acquired via an early lateral transfer from bacteroidetes, where we predict a role in chromosome partition. This likely happened before the last eukaryotic common ancestor, pointing to potential endosymbiont contributions beyond that of the mitochondrial progenitor. Further, we show that the dramatic lineage-specific expansion of this domain in the bacteroidetes lineage primarily is linked to a functional shift related to potential recognition and preemption of genome invasive entities such as mobile elements. Remarkably, the CCDC81 clade has undergone a similar massive lineage-specific expansion within the archosaurian lineage in birds, suggesting a possible use of the HU superfamily in a similar capacity in recognition of non-self molecules even in this case.


Temporal expression and steroidal regulation of piRNA pathway genes (mael, piwi, vasa) during Silurana (Xenopus) tropicalis embryogenesis and early larval development.

  • Dapeng Zhang‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2010‎

It has been extensively documented that exposure of amphibians and teleost fish to exogenous steroid hormones like estrogen, androgen, xenoestrogen or steroid biosynthesis inhibitors can impair their gonadal development or induce sex reversal against genotypic sex. However, the molecular pathways underlying sexual development and the effects of sex steroids or other exogenous hormones in these aquatic vertebrates remain elusive. Recently, a germ plasm-associated piRNA (piwi-interacting RNA) pathway has been shown to be a determinant in the development of animal gonadal germline cells. In the current study, we examined whether this piRNA pathway is involved in the regulation of sex steroid hormones in gonadal development. We firstly established developmental expression patterns of three key piRNA pathway genes (mael, piwi and vasa), during Silurana (Xenopus) tropicalis embryogenesis and early larval development. All three genes exhibit high expression at early developmental stages and have significantly decreased expression thereafter, indicating a very active involvement of piRNA pathway at the beginning of embryogenesis. We further examined gene expression changes of those genes in frog larvae exposed to two sex steroid biosynthesis inhibitors, fadrozole and finasteride, both of which are known to result in male-biased or female-biased phenotypes, respectively. We found that fadrozole and finasteride exposures increased the expression of piRNA pathway genes such as mael and vasa at the larval stage when the expression of piRNA pathway genes is programmed to be very low. Therefore, our results indicate that the piRNA pathway is likely a common pathway by which different sex steroid hormones regulate gonadal sex differentiation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: