Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 432 papers

Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish.

  • Dapeng Zhang‎ et al.
  • PloS one‎
  • 2009‎

Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted.


The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications.

  • A Maxwell Burroughs‎ et al.
  • Biology direct‎
  • 2015‎

Deciphering the origin of uniquely eukaryotic features of sub-cellular systems, such as the translation apparatus, is critical in reconstructing eukaryogenesis. One such feature is the highly conserved, but poorly understood, eukaryotic protein CDC123, which regulates the abundance of the eukaryotic translation initiation eIF2 complex and binds one of its components eIF2γ. We show that the eukaryotic protein CDC123 defines a novel clade of ATP-grasp enzymes distinguished from all other members of the superfamily by a RAGNYA domain with two conserved lysines (henceforth the R2K clade). Combining the available biochemical and genetic data on CDC123 with the inferred enzymatic function, we propose that the eukaryotic CDC123 proteins are likely to function as ATP-dependent protein-peptide ligases which modify proteins by ribosome-independent addition of an oligopeptide tag. We also show that the CDC123 family emerged first in bacteria where it appears to have diversified along with the two other families of the R2K clade. The bacterial CDC123 family members are of two distinct types, one found as part of type VI secretion systems which deliver polymorphic toxins and the other functioning as potential effectors delivered to amoeboid eukaryotic hosts. Representatives of the latter type have also been independently transferred to phylogenetically unrelated amoeboid eukaryotes and their nucleo-cytoplasmic large DNA viruses. Similarly, the two other prokaryotic R2K clade families are also proposed to participate in biological conflicts between bacteriophages and their hosts. These findings add further evidence to the recently proposed hypothesis that the horizontal transfer of enzymatic effectors from the bacterial endosymbionts of the stem eukaryotes played a fundamental role in the emergence of the characteristically eukaryotic regulatory systems and sub-cellular structures.


The Oncogene LRF Stimulates Proliferation of Mesenchymal Stem Cells and Inhibits Their Chondrogenic Differentiation.

  • Jasper H N Yik‎ et al.
  • Cartilage‎
  • 2013‎

The oncogene leukemia/lymphoma-related factor (LRF) enhances chondrosarcoma proliferation and malignancy. This study aimed to investigate the roles of LRF in chondrogenic differentiation of primary human bone marrow-derived mesenchymal stem cells (BMSCs).


Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress.

  • Lin Zhou‎ et al.
  • Horticulture research‎
  • 2014‎

Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluation of effects of exogenous ABA on the leaf proteome in tea plant exposed to drought stress. Leaf protein patterns of tea plants under simulated drought stress [(polyethylene glycol (PEG)-treated] and exogenous ABA treatment were analyzed in a time-course experiment using two-dimensional electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Among the 72 protein spots identified by MALDI-TOF MS, 16 proteins were downregulated and two were upregulated by exogenous ABA. The upregulated proteins have roles in glycolysis and photosystem II stabilization. Twenty-one protein spots were responsive to drought stress and most participate in carbohydrate and nitrogen metabolism, control of reactive oxygen species (ROS), defense, signaling or nucleic acid metabolism. The combined treatments of exogenous ABA and drought showed upregulation of 10 protein spots at 12 h and upregulation of 11 proteins at 72 h after initiation of drought stress. The results support the importance of the role that ABA plays in the tea plant during drought stress, by improving protein transport, carbon metabolism and expression of resistance proteins.


Pika Gut May Select for Rare but Diverse Environmental Bacteria.

  • Huan Li‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

The composition of the mammalian gut bacterial communities can be influenced by the introduction of environmental bacteria in their respective habitats. However, there are no extensive studies examining the interactions between environmental bacteriome and gut bacteriome in wild mammals. Here, we explored the relationship between the gut bacterial communities of pika (Ochotona spp.) and the related environmental bacteria across host species and altitudinal sites using 16S rRNA gene sequencing. Plateau pikas (O. curzoniae) and Daurian pikas (O. daurica) were sampled at five different sites, and plant and soil samples were collected at each site as well. Our data indicated that Plateau pikas and Daurian pikas had distinct bacterial communities. The pika, plant and soil bacterial communities were also distinct. Very little overlap occurred in the pika core bacteria and the most abundant environmental bacteria. The shared OTUs between pikas and environments were present in the environment at relatively low abundance, whereas they were affiliated with diverse bacterial taxa. These results suggested that the pika gut may mainly select for low-abundance but diverse environmental bacteria in a host species-specific manner.


Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution.

  • Elena Albrecht‎ et al.
  • BMC genetics‎
  • 2012‎

The exotic pepper species Capsicum baccatum, also known as the aji or Peruvian hot pepper, is comprised of wild and domesticated botanical forms. The species is a valuable source of new genes useful for improving fruit quality and disease resistance in C. annuum sweet bell and hot chile pepper. However, relatively little research has been conducted to characterize the species, thus limiting its utilization. The structure of genetic diversity in a plant germplasm collection is significantly influenced by its ecogeographical distribution. Together with DNA fingerprints derived from AFLP markers, we evaluated variation in fruit and plant morphology of plants collected across the species native range in South America and evaluated these characters in combination with the unique geography, climate and ecology at different sites where plants originated.


ssDNA Aptamer Specifically Targets and Selectively Delivers Cytotoxic Drug Doxorubicin to HepG2 Cells.

  • Ge Yu‎ et al.
  • PloS one‎
  • 2016‎

Hepatocellular carcinoma (HCC) is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3) by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX) and exploited its role as a targeting ligand to deliver doxorubicin (Dox) to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5'-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol) were fully intercalated in each conjugate aptamer-Dox (ApDC) molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells.


The Tibetan medicine Zuotai influences clock gene expression in the liver of mice.

  • Huan Li‎ et al.
  • PeerJ‎
  • 2016‎

Background. The circadian clock is involved in drug metabolism, efficacy and toxicity. Drugs could in turn affect the biological clock as a mechanism of their actions. Zuotai is an essential component of many popular Tibetan medicines for sedation, tranquil and "detoxification," and is mainly composed of metacinnabar (β-HgS). The pharmacological and/or toxicological basis of its action is unknown. This study aimed to examine the effect of Zuotai on biological clock gene expression in the liver of mice. Materials and methods. Mice were orally given Zuotai (10 mg/kg, 1.5-fold of clinical dose) daily for 7 days, and livers were collected every 4 h during the 24 h period. Total RNA was extracted and subjected to real-time RT-PCR analysis of circadian clock gene expression. Results. Zuotai decreased the oscillation amplitude of the clock core gene Clock, neuronal PAS domain protein 2 (Npas2), Brain and muscle Arnt-like protein-1 (Bmal1) at 10:00. For the clock feedback negative control genes, Zuotai had no effect on the oscillation of the clock gene Cryptochrome (Cry1) and Period genes (Per1-3). For the clock-driven target genes, Zuotai increased the oscillation amplitude of the PAR-bZip family member D-box-binding protein (Dbp), decreased nuclear factor interleukin 3 (Nfil3) at 10:00, but had no effect on thyrotroph embryonic factor (Tef); Zuotai increased the expression of nuclear receptor Rev-Erbα (Nr1d1) at 18:00, but had little influence on the nuclear receptor Rev-Erbβ (Nr1d2) and RORα. Conclusion. The Tibetan medicine Zuotai could influence the expression of clock genes, which could contribute to pharmacological and/or toxicological effects of Zuotai.


Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

  • Lin Zhou‎ et al.
  • Horticulture research‎
  • 2015‎

Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.


Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling.

  • A Maxwell Burroughs‎ et al.
  • Nucleic acids research‎
  • 2015‎

Cyclic di- and linear oligo-nucleotide signals activate defenses against invasive nucleic acids in animal immunity; however, their evolutionary antecedents are poorly understood. Using comparative genomics, sequence and structure analysis, we uncovered a vast network of systems defined by conserved prokaryotic gene-neighborhoods, which encode enzymes generating such nucleotides or alternatively processing them to yield potential signaling molecules. The nucleotide-generating enzymes include several clades of the DNA-polymerase β-like superfamily (including Vibrio cholerae DncV), a minimal version of the CRISPR polymerase and DisA-like cyclic-di-AMP synthetases. Nucleotide-binding/processing domains include TIR domains and members of a superfamily prototyped by Smf/DprA proteins and base (cytokinin)-releasing LOG enzymes. They are combined in conserved gene-neighborhoods with genes for a plethora of protein superfamilies, which we predict to function as nucleotide-sensors and effectors targeting nucleic acids, proteins or membranes (pore-forming agents). These systems are sometimes combined with other biological conflict-systems such as restriction-modification and CRISPR/Cas. Interestingly, several are coupled in mutually exclusive neighborhoods with either a prokaryotic ubiquitin-system or a HORMA domain-PCH2-like AAA+ ATPase dyad. The latter are potential precursors of equivalent proteins in eukaryotic chromosome dynamics. Further, components from these nucleotide-centric systems have been utilized in several other systems including a novel diversity-generating system with a reverse transcriptase. We also found the Smf/DprA/LOG domain from these systems to be recruited as a predicted nucleotide-binding domain in eukaryotic TRPM channels. These findings point to evolutionary and mechanistic links, which bring together CRISPR/Cas, animal interferon-induced immunity, and several other systems that combine nucleic-acid-sensing and nucleotide-dependent signaling.


Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions.

  • Xiao Wei‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and beneficial effects of a potential probiotic strain.


Aluminum Toxicity-Induced Alterations of Leaf Proteome in Two Citrus Species Differing in Aluminum Tolerance.

  • Huan Li‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Seedlings of aluminum-tolerant 'Xuegan' (Citrus sinensis) and Al-intolerant 'sour pummelo' (Citrus grandis) were fertigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl₃·6H₂O. Al toxicity-induced inhibition of photosynthesis and the decrease of total soluble protein only occurred in C. grandis leaves, demonstrating that C. sinensis had higher Al tolerance than C. grandis. Using isobaric tags for relative and absolute quantification (iTRAQ), we obtained more Al toxicity-responsive proteins from C. sinensis than from C. grandis leaves, which might be responsible for the higher Al tolerance of C. sinensis. The following aspects might contribute to the Al tolerance of C. sinensis: (a) better maintenance of photosynthesis and energy balance via inducing photosynthesis and energy-related proteins; (b) less increased requirement for the detoxification of reactive oxygen species and other toxic compounds, such as aldehydes, and great improvement of the total ability of detoxification; and (c) upregulation of low-phosphorus-responsive proteins. Al toxicity-responsive proteins related to RNA regulation, protein metabolism, cellular transport and signal transduction might also play key roles in the higher Al tolerance of C. sinensis. We present the global picture of Al toxicity-induced alterations of protein profiles in citrus leaves, and identify some new Al toxicity-responsive proteins related to various biological processes. Our results provide some novel clues about plant Al tolerance.


Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci.

  • Fang He‎ et al.
  • Neurology. Genetics‎
  • 2016‎

To determine whether GGGGCC (G4C2) repeat expansions at loci other than C9orf72 serve as common causes of amyotrophic lateral sclerosis (ALS).


Pika Population Density Is Associated with the Composition and Diversity of Gut Microbiota.

  • Huan Li‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Host population density is positively associated with the strength of social interactions or the frequency of physical contacts, and thus potentially influences microbial transmission among individuals. However, the relationship between host density and gut microbiota remains unknown. Here, we characterized the gut microbiota of plateau pikas (Ochotona curzoniae) in wild experimental fields with different host population densities. The abundance of some gut microbes significantly correlated with host density, such as Ruminococcaceae, Lachnospiraceae, and Staphylococcaceae. Intriguingly, host density was positively correlated with alpha diversity (Shannon diversity and observed species) of gut microbial communities. The inter-individual gut microbiota within high-density groups were more similar to each other than those of low-density groups. Host density significantly explained the variations in the gut microbiota, even after controlling sex, weight, diet and geographical locations. Based on the PICRUSt metagenome prediction, positive correlations were observed between host density and the relative abundances of 12 gene functions involved in cellular processes, environmental information processing and metabolism. These results indicate the importance of host density as a factor in shaping gut microbial composition and diversity in plateau pikas, and may further help us understand the social transmission of gut microbiota.


Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes.

  • Erna Li‎ et al.
  • Scientific reports‎
  • 2016‎

Enterobacter aerogenes (Enterobacteriaceae) is an important opportunistic pathogen that causes hospital-acquired pneumonia, bacteremia, and urinary tract infections. Recently, multidrug-resistant E. aerogenes have been a public health problem. To develop an effective antimicrobial agent, bacteriophage phiEap-2 was isolated from sewage and its genome was sequenced because of its ability to lyse the multidrug-resistant clinical E. aerogenes strain 3-SP. Morphological observations suggested that the phage belongs to the Siphoviridae family. Comparative genome analysis revealed that phage phiEap-2 is related to the Salmonella phage FSL SP-031 (KC139518). All of the structural gene products (except capsid protein) encoded by phiEap-2 had orthologous gene products in FSL SP-031 and Serratia phage Eta (KC460990). Here, we report the complete genome sequence of phiEap-2 and major findings from the genomic analysis. Knowledge of this phage might be helpful for developing therapeutic strategies against E. aerogenes.


GOLPH3 overexpression correlates with tumor progression and poor prognosis in patients with clinically N0 oral tongue cancer.

  • Huan Li‎ et al.
  • Journal of translational medicine‎
  • 2012‎

Overexpression of GOLPH3 (Golgi phosphoprotein 3, 34 kDa) is associated with the progression of many solid tumor types leading to an unfavorable clinical outcome. We aimed to investigate the clinical significance of GOLPH3 expression in the development and progression of clinically N0 (cN0) oral tongue cancer.


Gene flow and biological conflict systems in the origin and evolution of eukaryotes.

  • L Aravind‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2012‎

The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary "nurseries" for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.


Effect of polymorphisms in XPD on clinical outcomes of platinum-based chemotherapy for Chinese non-small cell lung cancer patients.

  • Wenting Wu‎ et al.
  • PloS one‎
  • 2012‎

Xeroderma pigmentosum group D (XPD) codes for a DNA helicase involved in nucleotide excision repair that removes platinum-induced DNA damage. Genetic polymorphisms of XPD may affect DNA repair capacity and lead to individual differences in the outcome of patients after chemotherapy. This study aims to identify whether XPD polymorphisms affect clinical efficacy among advanced non-small cell lung cancer (NSCLC) patients treated with platinum-based chemotherapy.


PTIGS-IdIt, a system for species identification by DNA sequences of the psbA-trnH intergenic spacer region.

  • Chang Liu‎ et al.
  • BMC bioinformatics‎
  • 2011‎

DNA barcoding technology, which uses a short piece of DNA sequence to identify species, has wide ranges of applications. Until today, a universal DNA barcode marker for plants remains elusive. The rbcL and matK regions have been proposed as the "core barcode" for plants and the ITS2 and psbA-trnH intergenic spacer (PTIGS) regions were later added as supplemental barcodes. The use of PTIGS region as a supplemental barcode has been limited by the lack of computational tools that can handle significant insertions and deletions in the PTIGS sequences. Here, we compared the most commonly used alignment-based and alignment-free methods and developed a web server to allow the biologists to carry out PTIGS-based DNA barcoding analyses.


DNA barcode goes two-dimensions: DNA QR code web server.

  • Chang Liu‎ et al.
  • PloS one‎
  • 2012‎

The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: