Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 127 papers

The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein.

  • Lavoisier Ramos-Espiritu‎ et al.
  • Oncotarget‎
  • 2016‎

cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein.


Rac1 modulates the formation of primordial follicles by facilitating STAT3-directed Jagged1, GDF9 and BMP15 transcription in mice.

  • Lihua Zhao‎ et al.
  • Scientific reports‎
  • 2016‎

The size of the primordial follicle pool determines the reproductive potential of mammalian females, and establishment of the pool is highly dependent on specific genes expression. However, the molecular mechanisms by which the essential genes are regulated coordinately to ensure primordial follicle assembly remain a mystery. Here, we show that the small GTPase Rac1 plays an indispensable role in controlling the formation of primordial follicles in mouse ovary. Employing fetal mouse ovary organ culture system, we demonstrate that disruption of Rac1 retarded the breakdown of germline cell cysts while Rac1 overexpression accelerated the formation of primordial follicles. In addition, in vivo inhibitor injection resulted in the formation of multi-oocyte follicles. Subsequent investigation showed that Rac1 induced nuclear import of STAT3 by physical binding. In turn, nuclear STAT3 directly activated the transcription of essential oocyte-specific genes, including Jagged1, GDF9, BMP15 and Nobox. Further, GDF9 and BMP15 regulated the translation of Notch2 via mTORC1 activation in pregranulosa cells. Overexression or addition of Jagged1, GDF9 and BMP15 not only reversed the effect of Rac1 disruption, but also accelerated primordial follicle formation via Notch2 signaling activation. Collectively, these results indicate that Rac1 plays important roles as a key regulator in follicular assembly.


G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells.

  • Tuo Zhang‎ et al.
  • Cell reports‎
  • 2016‎

DNA methylation at imprinting control regions (ICRs) is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs.


Derivation and characterization of a UCP1 reporter human ES cell line.

  • Suranjit Mukherjee‎ et al.
  • Stem cell research‎
  • 2018‎

Interest in human brown fat as a novel therapeutic target to tackle the growing obesity and diabetes epidemic has increased dramatically in recent years. While much insight into brown fat biology has been gained from murine cell lines and models, few resources are available to study human brown fat in vitro, which makes the need for new ways to derive and study human brown adipocytes imperative. Human ES cell based reporter systems present an excellent tool to identify, mark, and purify cell populations of choice. In this study, we detail the derivation and characterization of a novel human ES UCP1 reporter cell line that marks UCP1 positive adipocytes in vitro. We targeted a mCherry reporter to the UCP1 stop codon via CRISPR-Cas9 based gene targeting. The brown adipocytes derived from reporter cells express UCP1, display high mitochondrial content, multi-locular lipid morphology, and exhibit functional properties such as lipolysis. The mCherry positive cells purified after cell sorting show elevated expression of brown fat marker genes and a high similarity to isolated human brown fat via RNA-seq analysis. Finally, we demonstrate the utility of this reporter to real time monitor UCP1 expression upon stimulation. This reporter cell line thus presents new opportunities to study human brown fat biology by enabling future work to understand early human brown fat development, perform disease modeling, and facilitate drug screening.


An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.

  • Federico González‎ et al.
  • Cell stem cell‎
  • 2014‎

Human pluripotent stem cells (hPSCs) offer a unique platform for elucidating the genes and molecular pathways that underlie complex traits and diseases. To realize this promise, methods for rapid and controllable genetic manipulations are urgently needed. By combining two newly developed gene-editing tools, the TALEN and CRISPR/Cas systems, we have developed a genome-engineering platform in hPSCs, which we named iCRISPR. iCRISPR enabled rapid and highly efficient generation of biallelic knockout hPSCs for loss-of-function studies, as well as homozygous knockin hPSCs with specific nucleotide alterations for precise modeling of disease conditions. We further demonstrate efficient one-step generation of double- and triple-gene knockout hPSC lines, as well as stage-specific inducible gene knockout during hPSC differentiation. Thus the iCRISPR platform is uniquely suited for dissection of complex genetic interactions and pleiotropic gene functions in human disease studies and has the potential to support high-throughput genetic analysis in hPSCs.


EthSEQ: ethnicity annotation from whole exome sequencing data.

  • Alessandro Romanel‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2017‎

Whole exome sequencing (WES) is widely utilized both in translational cancer genomics studies and in the setting of precision medicine. Stratification of individual's ethnicity is fundamental for the correct interpretation of personal genomic variation impact. We implemented EthSEQ to provide reliable and rapid ethnicity annotation from whole exome sequencing individual's data, validated it on 1000 Genome Project and TCGA data (2700 samples) demonstrating high precision, and finally assessed computational performances compared to other tools. EthSEQ can be integrated into any WES based processing pipeline and exploits multi-core capabilities.


A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages.

  • Jason Tchieu‎ et al.
  • Cell stem cell‎
  • 2017‎

Directing the fate of human pluripotent stem cells (hPSCs) into different lineages requires variable starting conditions and components with undefined activities, introducing inconsistencies that confound reproducibility and assessment of specific perturbations. Here we introduce a simple, modular protocol for deriving the four main ectodermal lineages from hPSCs. By precisely varying FGF, BMP, WNT, and TGFβ pathway activity in a minimal, chemically defined medium, we show parallel, robust, and reproducible derivation of neuroectoderm, neural crest (NC), cranial placode (CP), and non-neural ectoderm in multiple hPSC lines, on different substrates independently of cell density. We highlight the utility of this system by interrogating the role of TFAP2 transcription factors in ectodermal differentiation, revealing the importance of TFAP2A in NC and CP specification, and performing a small-molecule screen that identified compounds that further enhance CP differentiation. This platform provides a simple stage for systematic derivation of the entire range of ectodermal cell types.


Visual analytics of brain networks.

  • Kaiming Li‎ et al.
  • NeuroImage‎
  • 2012‎

Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging.


Human pluripotent stem cells: an emerging model in developmental biology.

  • Zengrong Zhu‎ et al.
  • Development (Cambridge, England)‎
  • 2013‎

Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.


Sequence based residue depth prediction using evolutionary information and predicted secondary structure.

  • Hua Zhang‎ et al.
  • BMC bioinformatics‎
  • 2008‎

Residue depth allows determining how deeply a given residue is buried, in contrast to the solvent accessibility that differentiates between buried and solvent-exposed residues. When compared with the solvent accessibility, the depth allows studying deep-level structures and functional sites, and formation of the protein folding nucleus. Accurate prediction of residue depth would provide valuable information for fold recognition, prediction of functional sites, and protein design.


The histone modification reader ZCWPW1 is required for meiosis prophase I in male but not in female mice.

  • Miao Li‎ et al.
  • Science advances‎
  • 2019‎

Meiosis is a specialized type of cell division that creates haploid germ cells and ensures their genetic diversity through homologous recombination. We show that the H3K4me3 reader ZCWPW1 is specifically required for meiosis prophase I progression in male but not in female germ cells in mice. Loss of Zcwpw1 in male mice caused a complete failure of synapsis, resulting in meiotic arrest at the zygotene to pachytene stage, accompanied by incomplete DNA double-strand break repair and lack of crossover formation, leading to male infertility. In oocytes, deletion of Zcwpw1 only somewhat slowed down meiosis prophase I progression; Zcwpw1-/- oocytes were able to complete meiosis, and Zcwpw1-/- female mice had normal fertility until mid-adulthood. We conclude that the H3K4me3 reader ZCWPW1 is indispensable for meiosis synapsis in males but is dispensable for females. Our results suggest that ZCWPW1 may represent a previously unknown, sex-dependent epigenetic regulator of germ cell meiosis in mammals.


Combined Metabolomics and Genome-Wide Transcriptomics Analyses Show Multiple HIF1α-Induced Changes in Lipid Metabolism in Early Stage Clear Cell Renal Cell Carcinoma.

  • Johannes C van der Mijn‎ et al.
  • Translational oncology‎
  • 2020‎

The accumulation of lipids is a hallmark of human clear cell renal cell carcinoma (ccRCC). Advanced ccRCC tumors frequently show increased lipid biosynthesis, but the regulation of lipid metabolism in early stage ccRCC tumors has not been studied. Here, we performed combined transcriptomics and metabolomics on a previously characterized transgenic mouse model (TRAnsgenic Cancer of the Kidney, TRACK) of early stage ccRCC. We found that in TRACK kidneys, HIF1α activation increases transcripts of lipid receptors (Cd36, ACVRL1), lipid storage genes (Hilpda and Fabp7), and intracellular levels of essential fatty acids, including linoleic acid and linolenic acid. Feeding the TRACK mice a high-fat diet enhances lipid accumulation in the kidneys. These results show that HIF1α increases the uptake and storage of dietary lipids in this early stage ccRCC model. By then analyzing early stage human ccRCC specimens, we found similar increases in CD36 transcripts and increases in linoleic and linolenic acid relative to normal kidney samples. CD36 mRNA levels decreased, while FASN transcript levels increased with increasing ccRCC tumor stage. These results suggest that an increase in the lipid biosynthesis pathway in advanced ccRCC tumors may compensate for a decreased capacity of these advanced ccRCCs to scavenge extracellular lipids.


The stability of poorly crystalline arsenical ferrihydrite after long-term soil suspension incubation.

  • Tuo Zhang‎ et al.
  • Chemosphere‎
  • 2022‎

2- Line ferrihydrite (Fh) is widely used as a robust amendment for rapid arsenic removal or remediation in water or soil. However, the poorly crystalline phase of Fh is unstable and leads to arsenic leaching after long-term submergence in reductive aquatic and soil environments. In this study, the synthesized As(V)-bound Fh was characterized by various spectral approaches to investigate the factors that may affect the variation in As(V)-Fh in long-term continuously submerged soil suspensions. The X-ray diffraction (XRD) results showed that hematite was the main product and that goethite was the byproduct after 360 d of incubation. Approximately 12-17% and 4-5% Fh were transformed at As/Fe mole ratios of 0.005 and 0.05, respectively. After 360 d of incubation, the hematite morphology was clearly observed by scanning electron microscopy (SEM), and the As(V)-Fh surface areas were also decreased by 17.3-27.6% and 11.9-16.6% for As/Fe mole ratios of 0.005 and 0.05, respectively. In a comparison of the two tested soils (soils sampled in Sichuan Province (SC) and Hunan Province (HN)), As(V)-Fh transformed faster in HN soil suspensions, and more hematite and goethite were formed. Furthermore, during the incubation period, As(V) was transformed to As(III), and both species were released into the suspension from the As(V)-Fh surface. It was suggested that soil pH and Fe(II) concentration were key factors controlling the As(V)-Fh transformation process, and the differences between the two soils were due to the different soil pH values and contents of available Fe. Arsenic release was mainly caused by Fh transformation and ligand competition with soil organic matter (SOM).


Common germline-somatic variant interactions in advanced urothelial cancer.

  • Aram Vosoughi‎ et al.
  • Nature communications‎
  • 2020‎

The prevalence and biological consequences of deleterious germline variants in urothelial cancer (UC) are not fully characterized. We performed whole-exome sequencing (WES) of germline DNA and 157 primary and metastatic tumors from 80 UC patients. We developed a computational framework for identifying putative deleterious germline variants (pDGVs) from WES data. Here, we show that UC patients harbor a high prevalence of pDGVs that truncate tumor suppressor proteins. Deepening somatic loss of heterozygosity in serial tumor samples is observed, suggesting a critical role for these pDGVs in tumor progression. Significant intra-patient heterogeneity in germline-somatic variant interactions results in divergent biological pathway alterations between primary and metastatic tumors. Our results characterize the spectrum of germline variants in UC and highlight their roles in shaping the natural history of the disease. These findings could have broad clinical implications for cancer patients.


Generation of human embryonic stem cell models to exploit the EWSR1-CREB fusion promiscuity as a common pathway of transformation in human tumors.

  • Fabio Vanoli‎ et al.
  • Oncogene‎
  • 2021‎

Chromosomal translocations constitute driver mutations in solid tumors and leukemias. The mechanisms of how related or even identical gene fusions drive the pathogenesis of various tumor types remain elusive. One remarkable example is the presence of EWSR1 fusions with CREB1 and ATF1, members of the CREB family of transcription factors, in a variety of sarcomas, carcinomas and mesotheliomas. To address this, we have developed in vitro models of oncogenic fusions, in particular, EWSR1-CREB1 and EWSR1-ATF1, in human embryonic stem (hES) cells, which are capable of multipotent differentiation, using CRISPR-Cas9 technology and HDR together with conditional fusion gene expression that allows investigation into the early steps of cellular transformation. We show that expression of EWSR1-CREB1/ATF1 fusion in hES cells recapitulates the core gene signatures, respectively, of angiomatoid fibrous histiocytoma (AFH) and gastrointestinal clear cell sarcoma (GI-CCS), although both fusions lead to cell lethality. Conversely, expression of the fusions in hES cells differentiated to mesenchymal progenitors is compatible with prolonged viability while maintaining the core gene signatures. Moreover, in the context of a mesenchymal lineage, the proliferation of cells expressing the EWSR1-CREB1 fusion is further extended by deletion of the tumor suppressor TP53. We expect the generation of isogenic lines carrying oncogenic fusions in various cell lineages to expand our general understanding of how those single genetic events drive tumorigenesis while providing valuable resources for drug discovery.


Resveratrol attenuates doxorubicin-induced meiotic failure through inhibiting oxidative stress and apoptosis in mouse oocytes.

  • Jun Han‎ et al.
  • Aging‎
  • 2020‎

Doxorubicin (DXR), a widely used chemotherapeutic drug, has adverse effects on female fertility in young cancer patients. However, the underlying mechanisms of doxorubicin exposure on female fertility and how to prevent it have not been well studied yet. Here, mouse oocytes were employed to investigate the issues mentioned above. The results showed that doxorubicin treatment impaired oocyte meiotic maturation by destroying spindle assembly and chromosome arrangement. In addition, doxorubicin caused oxidative stress by increasing reactive oxygen species (ROS) levels. Furthermore, doxorubicin led to severe DNA damage in oocytes, which eventually induced apoptosis through DNA damage-P63-Caspase3 pathway. Conversely, resveratrol (RES) effectively improved oocyte quality by restoring spindle and chromosome configuration, reducing ROS levels and inhibiting apoptosis. In summary, our results indicate that RES can protect oocytes against doxorubicin-induced damage.


Molecular Basis of Zinc-Dependent Endocytosis of Human ZIP4 Transceptor.

  • Chi Zhang‎ et al.
  • Cell reports‎
  • 2020‎

Nutrient transporters can be rapidly removed from the cell surface via substrate-stimulated endocytosis as a way to control nutrient influx, but the molecular underpinnings are not well understood. In this work, we focus on zinc-dependent endocytosis of human ZIP4 (hZIP4), a zinc transporter that is essential for dietary zinc uptake. Structure-guided mutagenesis and internalization assay reveal that hZIP4 per se acts as the exclusive zinc sensor, with the transport site's being responsible for zinc sensing. In an effort of seeking sorting signal, a scan of the longest cytosolic loop (L2) leads to identification of a conserved Leu-Gln-Leu motif that is essential for endocytosis. Partial proteolysis of purified hZIP4 demonstrates a structural coupling between the transport site and the L2 upon zinc binding, which supports a working model of how zinc ions at physiological concentration trigger a conformation-dependent endocytosis of the zinc transporter. This work provides a paradigm on post-translational regulation of nutrient transporters.


A hypomorphic mutation in Pold1 disrupts the coordination of embryo size expansion and morphogenesis during gastrulation.

  • Tingxu Chen‎ et al.
  • Biology open‎
  • 2022‎

Formation of a properly sized and patterned embryo during gastrulation requires a well-coordinated interplay between cell proliferation, lineage specification and tissue morphogenesis. Following transient physical or pharmacological manipulations of embryo size, pre-gastrulation mouse embryos show remarkable plasticity to recover and resume normal development. However, it remains unclear how mechanisms driving lineage specification and morphogenesis respond to defects in cell proliferation during and after gastrulation. Null mutations in DNA replication or cell-cycle-related genes frequently lead to cell-cycle arrest and reduced cell proliferation, resulting in developmental arrest before the onset of gastrulation; such early lethality precludes studies aiming to determine the impact of cell proliferation on lineage specification and morphogenesis during gastrulation. From an unbiased ENU mutagenesis screen, we discovered a mouse mutant, tiny siren (tyrn), that carries a hypomorphic mutation producing an aspartate to tyrosine (D939Y) substitution in Pold1, the catalytic subunit of DNA polymerase δ. Impaired cell proliferation in the tyrn mutant leaves anterior-posterior patterning unperturbed during gastrulation but results in reduced embryo size and severe morphogenetic defects. Our analyses show that the successful execution of morphogenetic events during gastrulation requires that lineage specification and the ordered production of differentiated cell types occur in concordance with embryonic growth.


Zinc binding strength of proteins dominants zinc uptake in Caco-2 cells.

  • Tian Li‎ et al.
  • RSC advances‎
  • 2022‎

Zinc plays a vital role in structural, catalysis, and signal regulation in the human body. Zinc deficiency leads to the dysfunction of many organs and immunity systems. Diet proteins have distinct effects on zinc uptake. However, the mechanisms are uncovered. Here we select three principal components from whey protein: alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin, which bind with zinc at different affinities, to evaluate the relationship between their potential zinc uptake and protein binding. The experimental data shows that beta-lactoglobulin could promote zinc uptake, alpha-lactalbumin has minor effects, whereas bovine serum albumin reduced zinc uptake in Caco-2 cell lines. Zinc binding effects on protein structure were thoroughly inspected through fluorescent spectroscopy and X-ray crystallography. Isothermal titration calorimetry revealed that three proteins have different binding affinities toward zinc ions. We speculate that protein binding eliminates toxic effects from free zinc, and the binding strength dominates zinc uptake.


Low-dose carbon monoxide suppresses metastatic progression of disseminated cancer cells.

  • Tiantian Zhang‎ et al.
  • Cancer letters‎
  • 2022‎

Low-dose carbon monoxide (CO) is under investigation in clinical trials to treat non-cancerous diseases and has an excellent safety profile. Due to early detection and cancer awareness, an increasing number of cancer patients are diagnosed at early stages, when potentially curative surgical resection can be done. However, many patients ultimately experience recurrence. Here, we evaluate the therapeutic effect of CO on metastatic cancer progression. We show that 250 ppm CO inhibits the migration of multiple types of cancer cell lines, including breast, pancreatic, colon, prostate, liver, and lung cancer and reduces the ability to adhere to fibronectin. We demonstrate that in mouse models, 250 ppm inhaled CO inhibits lung metastasis of breast cancer and liver metastasis of pancreatic cancer. Moreover, low-dose CO suppresses recurrence and increases survival after surgical removal of primary pancreatic cancer in mice. Mechanistically, low-dose CO blocks transcription of heme importers, leading to diminished intracellular heme levels and a heme-regulated enzyme, cytochrome P4501B1 (CYP1B1). Either supplementing heme or overexpressing CYP1B1 reverses the anti-migration effect of low-dose CO. Taken together, low-dose CO therapy inhibits cell migration, reduces adhesion to fibronectin, prevents disseminated cancer cells from expanding into gross metastases, and improves survival in pre-clinical mouse models of metastasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: