Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells.

  • Federico González‎ et al.
  • Cell stem cell‎
  • 2014‎

Human pluripotent stem cells (hPSCs) offer a unique platform for elucidating the genes and molecular pathways that underlie complex traits and diseases. To realize this promise, methods for rapid and controllable genetic manipulations are urgently needed. By combining two newly developed gene-editing tools, the TALEN and CRISPR/Cas systems, we have developed a genome-engineering platform in hPSCs, which we named iCRISPR. iCRISPR enabled rapid and highly efficient generation of biallelic knockout hPSCs for loss-of-function studies, as well as homozygous knockin hPSCs with specific nucleotide alterations for precise modeling of disease conditions. We further demonstrate efficient one-step generation of double- and triple-gene knockout hPSC lines, as well as stage-specific inducible gene knockout during hPSC differentiation. Thus the iCRISPR platform is uniquely suited for dissection of complex genetic interactions and pleiotropic gene functions in human disease studies and has the potential to support high-throughput genetic analysis in hPSCs.


The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein.

  • Lavoisier Ramos-Espiritu‎ et al.
  • Oncotarget‎
  • 2016‎

cAMP signaling pathways can both stimulate and inhibit the development of cancer; however, the sources of cAMP important for tumorigenesis remain poorly understood. Soluble adenylyl cyclase (sAC) is a non-canonical, evolutionarily conserved, nutrient- and pH-sensing source of cAMP. sAC has been implicated in the metastatic potential of certain cancers, and it is differentially localized in human cancers as compared to benign tissues. We now show that sAC expression is reduced in many human cancers. Loss of sAC increases cellular transformation in vitro and malignant progression in vivo. These data identify the metabolic/pH sensor soluble adenylyl cyclase as a previously unappreciated tumor suppressor protein.


Human pluripotent stem cells: an emerging model in developmental biology.

  • Zengrong Zhu‎ et al.
  • Development (Cambridge, England)‎
  • 2013‎

Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.


A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages.

  • Jason Tchieu‎ et al.
  • Cell stem cell‎
  • 2017‎

Directing the fate of human pluripotent stem cells (hPSCs) into different lineages requires variable starting conditions and components with undefined activities, introducing inconsistencies that confound reproducibility and assessment of specific perturbations. Here we introduce a simple, modular protocol for deriving the four main ectodermal lineages from hPSCs. By precisely varying FGF, BMP, WNT, and TGFβ pathway activity in a minimal, chemically defined medium, we show parallel, robust, and reproducible derivation of neuroectoderm, neural crest (NC), cranial placode (CP), and non-neural ectoderm in multiple hPSC lines, on different substrates independently of cell density. We highlight the utility of this system by interrogating the role of TFAP2 transcription factors in ectodermal differentiation, revealing the importance of TFAP2A in NC and CP specification, and performing a small-molecule screen that identified compounds that further enhance CP differentiation. This platform provides a simple stage for systematic derivation of the entire range of ectodermal cell types.


Common germline-somatic variant interactions in advanced urothelial cancer.

  • Aram Vosoughi‎ et al.
  • Nature communications‎
  • 2020‎

The prevalence and biological consequences of deleterious germline variants in urothelial cancer (UC) are not fully characterized. We performed whole-exome sequencing (WES) of germline DNA and 157 primary and metastatic tumors from 80 UC patients. We developed a computational framework for identifying putative deleterious germline variants (pDGVs) from WES data. Here, we show that UC patients harbor a high prevalence of pDGVs that truncate tumor suppressor proteins. Deepening somatic loss of heterozygosity in serial tumor samples is observed, suggesting a critical role for these pDGVs in tumor progression. Significant intra-patient heterogeneity in germline-somatic variant interactions results in divergent biological pathway alterations between primary and metastatic tumors. Our results characterize the spectrum of germline variants in UC and highlight their roles in shaping the natural history of the disease. These findings could have broad clinical implications for cancer patients.


Generation of human embryonic stem cell models to exploit the EWSR1-CREB fusion promiscuity as a common pathway of transformation in human tumors.

  • Fabio Vanoli‎ et al.
  • Oncogene‎
  • 2021‎

Chromosomal translocations constitute driver mutations in solid tumors and leukemias. The mechanisms of how related or even identical gene fusions drive the pathogenesis of various tumor types remain elusive. One remarkable example is the presence of EWSR1 fusions with CREB1 and ATF1, members of the CREB family of transcription factors, in a variety of sarcomas, carcinomas and mesotheliomas. To address this, we have developed in vitro models of oncogenic fusions, in particular, EWSR1-CREB1 and EWSR1-ATF1, in human embryonic stem (hES) cells, which are capable of multipotent differentiation, using CRISPR-Cas9 technology and HDR together with conditional fusion gene expression that allows investigation into the early steps of cellular transformation. We show that expression of EWSR1-CREB1/ATF1 fusion in hES cells recapitulates the core gene signatures, respectively, of angiomatoid fibrous histiocytoma (AFH) and gastrointestinal clear cell sarcoma (GI-CCS), although both fusions lead to cell lethality. Conversely, expression of the fusions in hES cells differentiated to mesenchymal progenitors is compatible with prolonged viability while maintaining the core gene signatures. Moreover, in the context of a mesenchymal lineage, the proliferation of cells expressing the EWSR1-CREB1 fusion is further extended by deletion of the tumor suppressor TP53. We expect the generation of isogenic lines carrying oncogenic fusions in various cell lineages to expand our general understanding of how those single genetic events drive tumorigenesis while providing valuable resources for drug discovery.


A hypomorphic mutation in Pold1 disrupts the coordination of embryo size expansion and morphogenesis during gastrulation.

  • Tingxu Chen‎ et al.
  • Biology open‎
  • 2022‎

Formation of a properly sized and patterned embryo during gastrulation requires a well-coordinated interplay between cell proliferation, lineage specification and tissue morphogenesis. Following transient physical or pharmacological manipulations of embryo size, pre-gastrulation mouse embryos show remarkable plasticity to recover and resume normal development. However, it remains unclear how mechanisms driving lineage specification and morphogenesis respond to defects in cell proliferation during and after gastrulation. Null mutations in DNA replication or cell-cycle-related genes frequently lead to cell-cycle arrest and reduced cell proliferation, resulting in developmental arrest before the onset of gastrulation; such early lethality precludes studies aiming to determine the impact of cell proliferation on lineage specification and morphogenesis during gastrulation. From an unbiased ENU mutagenesis screen, we discovered a mouse mutant, tiny siren (tyrn), that carries a hypomorphic mutation producing an aspartate to tyrosine (D939Y) substitution in Pold1, the catalytic subunit of DNA polymerase δ. Impaired cell proliferation in the tyrn mutant leaves anterior-posterior patterning unperturbed during gastrulation but results in reduced embryo size and severe morphogenetic defects. Our analyses show that the successful execution of morphogenetic events during gastrulation requires that lineage specification and the ordered production of differentiated cell types occur in concordance with embryonic growth.


Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience.

  • Joe C Udeochu‎ et al.
  • Nature neuroscience‎
  • 2023‎

Pathological hallmarks of Alzheimer's disease (AD) precede clinical symptoms by years, indicating a period of cognitive resilience before the onset of dementia. Here, we report that activation of cyclic GMP-AMP synthase (cGAS) diminishes cognitive resilience by decreasing the neuronal transcriptional network of myocyte enhancer factor 2c (MEF2C) through type I interferon (IFN-I) signaling. Pathogenic tau activates cGAS and IFN-I responses in microglia, in part mediated by cytosolic leakage of mitochondrial DNA. Genetic ablation of Cgas in mice with tauopathy diminished the microglial IFN-I response, preserved synapse integrity and plasticity and protected against cognitive impairment without affecting the pathogenic tau load. cGAS ablation increased, while activation of IFN-I decreased, the neuronal MEF2C expression network linked to cognitive resilience in AD. Pharmacological inhibition of cGAS in mice with tauopathy enhanced the neuronal MEF2C transcriptional network and restored synaptic integrity, plasticity and memory, supporting the therapeutic potential of targeting the cGAS-IFN-MEF2C axis to improve resilience against AD-related pathological insults.


Glutamine independence is a selectable feature of pluripotent stem cells.

  • Santosha A Vardhana‎ et al.
  • Nature metabolism‎
  • 2019‎

Most rapidly proliferating mammalian cells rely on the oxidation of exogenous glutamine to support cell proliferation. We previously found that culture of mouse embryonic stem cells (ESCs) in the presence of inhibitors against MEK and GSK3β to maintain pluripotency reduces cellular reliance on glutamine for tricarboxylic acid (TCA) cycle anaplerosis, enabling ESCs to proliferate in the absence of exogenous glutamine. Here we show that reduced dependence on exogenous glutamine is a generalizable feature of pluripotent stem cells. Enhancing self-renewal, through either overexpression of pluripotency-associated transcription factors or altered signal transduction, decreases the utilization of glutamine-derived carbons in the TCA cycle. As a result, cells with the highest potential for self-renewal can be enriched by transient culture in glutamine-deficient media. During pluripotent cell culture or reprogramming to pluripotency, transient glutamine withdrawal selectively leads to the elimination of non-pluripotent cells. These data reveal that reduced dependence on glutamine anaplerosis is an inherent feature of self-renewing pluripotent stem cells and reveal a simple, non-invasive mechanism to select for mouse and human pluripotent stem cells within a heterogeneous population during both ESC passage and induced pluripotent cell reprogramming.


Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells.

  • Andriana G Kotini‎ et al.
  • Nature biotechnology‎
  • 2015‎

Chromosomal deletions associated with human diseases, such as cancer, are common, but synteny issues complicate modeling of these deletions in mice. We use cellular reprogramming and genome engineering to functionally dissect the loss of chromosome 7q (del(7q)), a somatic cytogenetic abnormality present in myelodysplastic syndromes (MDS). We derive del(7q)- and isogenic karyotypically normal induced pluripotent stem cells (iPSCs) from hematopoietic cells of MDS patients and show that the del(7q) iPSCs recapitulate disease-associated phenotypes, including impaired hematopoietic differentiation. These disease phenotypes are rescued by spontaneous dosage correction and can be reproduced in karyotypically normal cells by engineering hemizygosity of defined chr7q segments in a 20-Mb region. We use a phenotype-rescue screen to identify candidate haploinsufficient genes that might mediate the del(7q)- hematopoietic defect. Our approach highlights the utility of human iPSCs both for functional mapping of disease-associated large-scale chromosomal deletions and for discovery of haploinsufficient genes.


Discovery of a drug candidate for GLIS3-associated diabetes.

  • Sadaf Amin‎ et al.
  • Nature communications‎
  • 2018‎

GLIS3 mutations are associated with type 1, type 2, and neonatal diabetes, reflecting a key function for this gene in pancreatic β-cell biology. Previous attempts to recapitulate disease-relevant phenotypes in GLIS3-/- β-like cells have been unsuccessful. Here, we develop a "minimal component" protocol to generate late-stage pancreatic progenitors (PP2) that differentiate to mono-hormonal glucose-responding β-like (PP2-β) cells. Using this differentiation platform, we discover that GLIS3-/- hESCs show impaired differentiation, with significant death of PP2 and PP2-β cells, without impacting the total endocrine pool. Furthermore, we perform a high-content chemical screen and identify a drug candidate that rescues mutant GLIS3-associated β-cell death both in vitro and in vivo. Finally, we discovered that loss of GLIS3 causes β-cell death, by activating the TGFβ pathway. This study establishes an optimized directed differentiation protocol for modeling human β-cell disease and identifies a drug candidate for treating a broad range of GLIS3-associated diabetic patients.


Changes in matrix protein gene expression associated with mineralization in the differentiating chick limb-bud micromass culture system.

  • Cristina C Teixeira‎ et al.
  • Journal of cellular biochemistry‎
  • 2011‎

Chick limb-bud mesenchymal stem cells plated in high density culture in the presence of 4 mM inorganic phosphate and vitamin C differentiate and form a mineralizable matrix, resembling that of the chick growth plate. To further elucidate the mechanism that allows these cultures to form physiologic hydroxyapatite deposits, and how the process can be manipulated to gain insight into mineralization mechanisms, we compared gene expression in mineralizing (with 4 mM inorganic phosphate) and non-mineralizing cultures (containing only 1 mM inorganic phosphate) at the start of mineralization (day 11) and after mineralization reached a plateau (day 17) using a chick specific microarray. Based on replicate microarray experiments and K-cluster analysis, several genes associated with the mineralization process were identified, and their expression patterns confirmed throughout the culture period by quantitative RT-PCR. The functions of bone morphogenetic protein 1, BMP1, dentin matrix protein 1, DMP1, the sodium phosphate co-transporter, NaPi IIb, matrix metalloprotease 13. MMP-13, and alkaline phosphatase, along with matrix protein genes (type X collagen, bone sialoprotein, and osteopontin) usually associated with initiation of mineralization are discussed.


Exome Sequencing and Prediction of Long-Term Kidney Allograft Function.

  • Laurent Mesnard‎ et al.
  • PLoS computational biology‎
  • 2016‎

Current strategies to improve graft outcome following kidney transplantation consider information at the human leukocyte antigen (HLA) loci. Cell surface antigens, in addition to HLA, may serve as the stimuli as well as the targets for the anti-allograft immune response and influence long-term graft outcomes. We therefore performed exome sequencing of DNA from kidney graft recipients and their living donors and estimated all possible cell surface antigens mismatches for a given donor/recipient pair by computing the number of amino acid mismatches in trans-membrane proteins. We designated this tally as the allogenomics mismatch score (AMS). We examined the association between the AMS and post-transplant estimated glomerular filtration rate (eGFR) using mixed models, considering transplants from three independent cohorts (a total of 53 donor-recipient pairs, 106 exomes, and 239 eGFR measurements). We found that the AMS has a significant effect on eGFR (mixed model, effect size across the entire range of the score: -19.4 [-37.7, -1.1], P = 0.0042, χ2 = 8.1919, d.f. = 1) that is independent of the HLA-A, B, DR matching, donor age, and time post-transplantation. The AMS effect is consistent across the three independent cohorts studied and similar to the strong effect size of donor age. Taken together, these results show that the AMS, a novel tool to quantify amino acid mismatches in trans-membrane proteins in individual donor/recipient pair, is a strong, robust predictor of long-term graft function in kidney transplant recipients.


Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveals unique host responses, viral diversification, and drug interactions.

  • Daniel Butler‎ et al.
  • Nature communications‎
  • 2021‎

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Endothelial Jak3 expression enhances pro-hematopoietic angiocrine function in mice.

  • José Gabriel Barcia Durán‎ et al.
  • Communications biology‎
  • 2021‎

Jak3 is the only non-promiscuous member of the Jak family of secondary messengers. Studies to date have focused on understanding and targeting the cell-autonomous role of Jak3 in immunity, while functional Jak3 expression outside the hematopoietic system remains largely unreported. We show that Jak3 is expressed in endothelial cells across hematopoietic and non-hematopoietic organs, with heightened expression in the bone marrow. The bone marrow niche is understood as a network of different cell types that regulate hematopoietic function. We show that the Jak3-/- bone marrow niche is deleterious for the maintenance of long-term repopulating hematopoietic stem cells (LT-HSCs) and that JAK3-overexpressing endothelial cells have increased potential to expand LT-HSCs in vitro. This work may serve to identify a novel function for a highly specific tyrosine kinase in the bone marrow vascular niche and to further characterize the LT-HSC function of sinusoidal endothelium.


SARS-CoV-2 infection induces beta cell transdifferentiation.

  • Xuming Tang‎ et al.
  • Cell metabolism‎
  • 2021‎

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion.

  • Xiao-Chuan Cai‎ et al.
  • eLife‎
  • 2019‎

CARM1 is a cancer-relevant protein arginine methyltransferase that regulates many aspects of transcription. Its pharmacological inhibition is a promising anti-cancer strategy. Here SKI-73 (6a in this work) is presented as a CARM1 chemical probe with pro-drug properties. SKI-73 (6a) can rapidly penetrate cell membranes and then be processed into active inhibitors, which are retained intracellularly with 10-fold enrichment for several days. These compounds were characterized for their potency, selectivity, modes of action, and on-target engagement. SKI-73 (6a) recapitulates the effect of CARM1 knockout against breast cancer cell invasion. Single-cell RNA-seq analysis revealed that the SKI-73(6a)-associated reduction of invasiveness acts by altering epigenetic plasticity and suppressing the invasion-prone subpopulation. Interestingly, SKI-73 (6a) and CARM1 knockout alter the epigenetic plasticity with remarkable difference, suggesting distinct modes of action for small-molecule and genetic perturbations. We therefore discovered a CARM1-addiction mechanism of cancer metastasis and developed a chemical probe to target this process.


ChromaFold predicts the 3D contact map from single-cell chromatin accessibility.

  • Vianne R Gao‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.


Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling.

  • Tamara Caspary‎ et al.
  • Current biology : CB‎
  • 2002‎

Precise patterning of cell types along the dorsal-ventral axis of the spinal cord is essential to establish functional neural circuits. In order to prove the feasibility of studying a single biological process through random mutagenesis in the mouse, we have identified recessive ENU-induced mutations in six genes that prevent normal specification of ventral cell types in the spinal cord. We positionally cloned the genes responsible for two of the mutant phenotypes, smoothened and dispatched, which are homologs of Drosophila Hh pathway components. The Dispatched homolog1 (Disp1) mutation causes lethality at midgestation and prevents specification of ventral cell types in the neural tube, a phenotype identical to the Smoothened (Smo) null phenotype. As in Drosophila, mouse Disp1 is required to move Shh away from the site of synthesis. Despite the existence of a second mouse disp homolog, Disp1 is essential for long-range signaling by both Shh and Ihh ligands. Our data indicate that Shh signaling is required within the notochord to maintain Shh expression and to prevent notochord degeneration. Disp1, unlike Smo, is not required for this juxtacrine signaling by Shh.


FOXC1 in human trabecular meshwork cells is involved in regulatory pathway that includes miR-204, MEIS2, and ITGβ1.

  • Seyed Hassan Paylakhi‎ et al.
  • Experimental eye research‎
  • 2013‎

Forkhead box C1 (FOXC1) is a transcription factor that affects eye development. FOXC1 is implicated in the etiology of glaucoma because mutations in the gene are among the causes of Axenfeld-Rieger syndrome which is often accompanied by glaucoma. Glaucoma is the second leading cause of blindness. It is a complex disorder whose genetic basis in most patients remains unknown. Microarrays expression analysis was performed to identify genes in human trabecular meshwork (TM) primary cultures that are affected by FOXC1 and genes that may have roles in glaucoma. This represents the first genome wide analysis of FOXC1 target genes in any tissue. FOXC1 knock down by siRNAs affected the expression of 849 genes. Results on selected genes were confirmed by real time PCR, immunoblotting, and dual luciferase reporter assays. Observation of MEIS2 as a FOXC1 target and consideration of FOXC1 as a potential target of miR-204 prompted testing the effect of this micro RNA on expression of FOXC1 and several genes identified by array analysis as FOXC1 target genes. It was observed that miR-204 caused decreased expression of FOXC1 and the FOXC1 target genes CLOCK, PLEKHG5, ITGβ1, and MEIS2 in the TM cultures. Expression of CLOCK, PLEKHG5, ITGβ1 has not previously been reported to be affected by miR-204. The data suggest existence of a complex regulatory pathway in the TM part of which includes interactions between FOXC1, miR-204, MEIS2, and ITGβ1. All these molecules are known to have TM relevant functions, and the TM is strongly implicated in the etiology of glaucoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: