Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 57 papers

Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing.

  • Zijun Huo‎ et al.
  • Stem cell research‎
  • 2019‎

As one of the most essential genome guardians, p53 and its mutants have been suggested associated with many types of cancers. Many p53 mutants function induce unique phenotypes, including carcinogenesis, metastasis, and drug resistance. The p53(R249S) mutation is the most prevalent and specific mutation associated with liver cancer development. Here, we demonstrate the generation of a heterozygous p53(R249S) mutation in the H9 human embryonic stem cell line using TALEN-mediated genome editing. The generated cell line maintains a normal karyotype, a pluripotent state and the in vivo capacity to develop a teratoma containing all three germ layer tissues.


Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity.

  • Xiaojuan Chen‎ et al.
  • Protein & cell‎
  • 2014‎

Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagy-inducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM's inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity.


Endothelial gene expression and molecular changes in response to radiosurgery in in vitro and in vivo models of cerebral arteriovenous malformations.

  • Jian Tu‎ et al.
  • BioMed research international‎
  • 2013‎

Radiosurgery for cerebral arteriovenous malformations (AVMs) is limited to 2-year latency. There is no early marker to monitor whether the lesion is responsive to radiosurgery. In this study, we examined endothelial gene expression and molecular changes in response to radiosurgery. Gene expression of E- and P-selectin, ICAM-1, PECAM-1, VCAM-1, tissue factor, and vWF in human cerebral microvascular endothelial cells was quantified by RT-qPCR at different radiation doses and time points. Soluble E- and P-selectin, ICAM-1, VCAM-1, and tissue factor in an animal model of AVMs were quantified by ELISA at different time after radiosurgery. We found that gene expression of E- and P-selectin, ICAM-1, PECAM-1, and VCAM-1 was upregulated by radiation in a dose-dependent manner (P < .05). Gene expression of E- and P-selectin and ICAM-1 was more sensitive to irradiation than that of PECAM-1 and VCAM-1. Radiosurgery induced gene expression of P-selectin, ICAM-1, PECAM-1, and VCAM-1 was linearly correlated with time (P < .05). Radiosurgery induced elevation of soluble E- and P-selectin, ICAM-1, VCAM-1, and tissue factor in a rat model of AVMs (P < .05). Thus, a combination of these molecules measured at different time points may serve as an early predictor of responsiveness of AVMs to radiosurgery.


miR-137-3p Modulates the Progression of Prostate Cancer by Regulating the JNK3/EZH2 Axis.

  • Yachen Zang‎ et al.
  • OncoTargets and therapy‎
  • 2020‎

Prostate cancer (PCa) is one of the most common cancers in men worldwide. Early detection of prostate cancer by prostate-specific antigen (PSA) screening still has limitations. The discovery of new candidates is urgent and can provide insights into the mechanism involved in prostate cancer tumorigenesis.


Molecular signatures of BRCAness analysis identifies PARP inhibitor Niraparib as a novel targeted therapeutic strategy for soft tissue Sarcomas.

  • Hongyi Li‎ et al.
  • Theranostics‎
  • 2020‎

Background: Patients with advanced soft tissue sarcomas (STS) have a dismal prognosis with few effective therapeutic options. A defect in the homologous recombination repair (HRR) pathway can accumulate DNA repair errors and gene mutations, which can lead to tumorigenesis. BRCAness describes tumors with an HRR deficiency (HRD) in the absence of a germline BRCA1/2 mutation. However, the characteristics of BRCAness in STS remain largely unknown. Thus, this study aimed to explore the genomic and molecular landscape of BRCAness using whole exome sequencing (WES) in STS, aiming to find a potential target for STS treatment. Methods: WES was performed in 22 STS samples from the First Affiliated Hospital of Sun Yat-sen University to reveal the possible genomic and molecular characteristics. The characteristics were then validated using data of 224 STS samples from The Cancer Genome Atlas (TCGA) database and in vitro data. The analysis of the potential biomarker for BRCAness was performed. Targeted drug susceptibility and combination therapy screening of chemotherapeutics for STS were evaluated in STS cell lines, cell-line-derived xenografts (CDX), and patient-derived xenografts (PDX). Results: Compared with 30 somatic mutation signatures of cancers, high cosine-similarity (0.75) was identified for HRD signatures in the 22 STS samples using nonnegative matrix factorization. Single nucleotide polymorphism indicated a low mutation rate of BRCA1/2 in the 22 STS samples (11.76% and 5.88%, respectively). However, copy number variation analyses demonstrated widespread chromosomal instability; furthermore, 54.55% of STS samples (12/22) carried BRCAness traits. Subsequently, similar genomic and molecular characteristics were also detected in the 224 STS samples from TCGA and in vitro. Poly (ADP-ribose) polymerases (PARP)-1 could be a promising reflection of HRD and therapeutic response. Furthermore, the level of PAR formation was found to be correlated with PARP-1. Subsequently, STS cell lines were determined to be sensitive to PARP inhibitor (PARPi), niraparib. Moreover, based on the screening test of the five common PARPis and combination test among doxorubicin, ifosfamide, dacarbazine, and temozolomide (TMZ), niraparib and TMZ were the most synergistic in STS cell lines. The synergistic effect and safety of niraparib and TMZ combination were also shown in CDX and PDX. Conclusions: BRCAness might be the common genomic and molecular characteristics of majority of STS cases. PARP-1 and PAR could be potential proper and feasible theranostic biomarkers for assessing HRD in patients. STSs were sensitive to PARPi. Moreover, the combination of niraparib and TMZ showed synergistic effect. Niraparib and TMZ could be a promising targeted therapeutic strategy for patients with STS.


N6-methyladenosine regulates glycolysis of cancer cells through PDK4.

  • Zihan Li‎ et al.
  • Nature communications‎
  • 2020‎

Studies on biological functions of N6-methyladenosine (m6A) modification in mRNA have sprung up in recent years. We find m6A can positively regulate the glycolysis of cancer cells. Specifically, m6A-sequencing and functional studies confirm that pyruvate dehydrogenase kinase 4 (PDK4) is involved in m6A regulated glycolysis and ATP generation. The m6A modified 5'UTR of PDK4 positively regulates its translation elongation and mRNA stability via binding with YTHDF1/eEF-2 complex and IGF2BP3, respectively. Targeted specific demethylation of PDK4 m6A by dm6ACRISPR system can significantly decrease the expression of PDK4 and glycolysis of cancer cells. Further, TATA-binding protein (TBP) can transcriptionally increase the expression of Mettl3 in cervical cancer cells via binding to its promoter. In vivo and clinical data confirm the positive roles of m6A/PDK4 in tumor growth and progression of cervical and liver cancer. Our study reveals that m6A regulates glycolysis of cancer cells through PDK4.


The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation.

  • Liang-Yan Chen‎ et al.
  • Molecular cancer‎
  • 2020‎

Circular RNA (circRNAs) and hypoxia have been found to play the key roles in the pathogenesis and progression of cancer including colorectal cancer (CRC). However, the expressions and functions of the specific circRNAs in regulating hypoxia-involved CRC metastasis, and the circRNAs that are relevant to regulate HIF-1α levels in CRC remain elusive.


Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples.

  • Haifeng Liu‎ et al.
  • Sensors and actuators. B, Chemical‎
  • 2021‎

The accurate and rapid screening of serum antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the key to control the spread of 2019 coronavirus disease (COVID-19). In this study, we reported a surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) for the simultaneous detection of anti-SARS-CoV-2 IgM/IgG with high sensitivity. Novel SERS tags labeled with dual layers of Raman dye were fabricated by coating a complete Ag shell on SiO2 core (SiO2@Ag) and exhibited excellent SERS signals, good monodispersity, and high stability. Anti-human IgM and IgG were immobilized onto the two test lines of the strip to capture the formed SiO2@Ag-spike (S) protein-anti-SARS-CoV-2 IgM/IgG immunocomplexes. The SERS signal intensities of the IgM and IgG test zones were easily recorded by a portable Raman instrument and used for the high-sensitivity analysis of target IgM and IgG. The limit of detection of SERS-LFIA was 800 times higher than that of standard Au nanoparticle-based LFIA for target IgM and IgG. The SERS-LFIA biosensor was tested on 19 positive serum samples from COVID-19 patients and 49 negative serum samples from healthy people to demonstrate the clinical feasibility of our proposed assay. The results revealed that the proposed method exhibited high accuracy and specificity for patients with SARS-CoV-2 infection.


Transcriptional Regulator YqeI, Locating at ETT2 Locus, Affects the Pathogenicity of Avian Pathogenic Escherichia coli.

  • Mei Xue‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2020‎

Avian pathogenic Escherichia coli (APEC) is the leading cause of systemic infections in poultry worldwide and has a hidden threat to public health. Escherichia coli type three secretion system 2 (ETT2), similar to the Salmonella pathogenicity island SPI1, is widely distributed in APEC and associated with virulence. The function of YqeI, which is one of the hypothetical transcriptional regulators locating at the ETT2 locus of APEC, is unknown. In this study, we successfully obtained the mutant strain AE81ΔyqeI of the wild type strain AE81 and performed the transcriptional profiling assays. Additionally, the transcriptional sequencing results revealed that YqeI influenced localization, locomotion and biological adhesion and so on. The transmission electron microscope observation showed that the wild type strain AE81 possessed long curved flagella, whereas the mutant strain AE81ΔyqeI hardly had any. The strain AE81ΔyqeI exhibited lower motility than AE81 after culturing the dilute bacterial suspension on a semisolid medium. It was also found that the survival ability of AE81ΔyqeI weakened significantly when AE81ΔyqeI was cultured with 0%, 10%, 20%, 30%, 40% and 50% SPF serum in PBS, and AE81ΔyqeI had decreased adherence to DF-1 cells compared with AE81 in the bacterial adhesion assay. The bacterial colonization assay indicated that the virulence of AE81ΔyqeI was reduced in the heart, liver, spleen, and lung. These results confirmed that the transcription regulator YqeI is involved in APEC's pathogenicity, and this study provides clues for future research.


YqeH contributes to avian pathogenic Escherichia coli pathogenicity by regulating motility, biofilm formation, and virulence.

  • Lei Yin‎ et al.
  • Veterinary research‎
  • 2022‎

Avian pathogenic Escherichia coli (APEC) is a pathotype of extraintestinal pathogenic E. coli and one of the most serious infectious diseases of poultry. It not only causes great economic losses to the poultry industry, but also poses a serious threat to public health worldwide. Here, we examined the role of YqeH, a transcriptional regulator located at E. coli type III secretion system 2 (ETT2), in APEC pathogenesis. To investigate the effects of YqeH on APEC phenotype and virulence, we constructed a yqeH deletion mutant (APEC40-ΔyqeH) and a complemented strain (APEC40-CΔyqeH) of APEC40. Compared with the wild type (WT), the motility and biofilm formation of APEC40-ΔyqeH were significantly reduced. The yqeH mutant was highly attenuated in a chick infection model compared with WT, and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. However, the mechanisms underlying these phenomena were unclear. Therefore, we analyzed the transcriptional effects of the yqeH deletion to clarify the regulatory mechanisms of YqeH, and the role of YqeH in APEC virulence. The deletion of yqeH downregulated the transcript levels of several flagellum-, biofilm-, and virulence-related genes. Our results demonstrate that YqeH is involved in APEC pathogenesis, and the reduced virulence of APEC40-ΔyqeH may be related to its reduced motility and biofilm formation.


EspE3 plays a role in the pathogenicity of avian pathogenic Escherichia coli.

  • Qianwen Li‎ et al.
  • Veterinary research‎
  • 2023‎

APEC encodes multiple virulence factors that have complex pathogenic mechanisms. In this study, we report a virulence factor named EspE3, which can be secreted from APEC. This protein was predicted to have a leucine-rich repeat domain (LRR) and may have a similar function to IpaH class effectors of the type III secretion system (T3SS). For further exploration, the regulatory correlation between the espE3 and ETT2 genes in APEC was analysed. We then assessed the pathogenicity of EspE3, detected it in APEC secretion proteins and screened the proteins of EspE3 that interact with chicken trachea epithelial cells. This study provides data on a new virulence factor for further exploring the pathogenic mechanism of APEC.


Silencing of long noncoding RNA AK139328 attenuates ischemia/reperfusion injury in mouse livers.

  • Zhenzhen Chen‎ et al.
  • PloS one‎
  • 2013‎

Recently, increasing evidences had suggested that long noncoding RNAs (LncRNAs) are involved in a wide range of physiological and pathophysiological processes. Here we determined the LncRNA expression profile using microarray technology in mouse livers after ischemia/reperfusion treatment. Seventy one LncRNAs were upregulated, and 27 LncRNAs were downregulated in ischemia/reperfusion-treated mouse livers. Eleven of the most significantly deregulated LncRNAs were further validated by quantitative PCR assays. Among the upregulated LncRNAs confirmed by quantitative PCR assays, AK139328 exhibited the highest expression level in normal mouse livers. siRNA-mediated knockdown of hepatic AK139328 decreased plasma aminotransferase activities, and reduced necrosis area in the livers with a decrease in caspase-3 activation after ischemia/reperfusion treatment. In ischemia/reperfusion liver, knockdown of AK139328 increased survival signaling proteins including phosphorylated Akt (pAkt), glycogen synthase kinase 3 (pGSK3) and endothelial nitric oxide synthase (peNOS). Furthermore, knockdown of AK139328 also reduced macrophage infitration and inhibited NF-κB activity and inflammatory cytokines expression. In conclusion, these findings revealed that deregulated LncRNAs are involved in liver ischemia/reperfusion injury. Silencing of AK139328 ameliorated ischemia/reperfusion injury in the liver with the activation of Akt signaling pathway and inhibition of NF-κB activity. LncRNA AK139328 might be a novel target for diagnosis and treatment of liver surgery or transplantation.


A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming.

  • Julian A Gingold‎ et al.
  • Molecular cell‎
  • 2014‎

Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.


Notch1 and 4 signaling responds to an increasing vascular wall shear stress in a rat model of arteriovenous malformations.

  • Jian Tu‎ et al.
  • BioMed research international‎
  • 2014‎

Notch signaling is suggested to promote the development and maintenance of cerebral arteriovenous malformations (AVMs), and an increasing wall shear stress (WSS) contributes to AVM rupture. Little is known about whether WSS impacts Notch signaling, which is important for understanding the angiogenesis of AVMs. WSS was measured in arteriovenous fistulas (AVF) surgically created in 96 rats at different time points over a period of 84 days. The expression of Notch receptors 1 and 4 and their ligands, Delta1 and 4, Jagged1, and Notch downstream gene target Hes1 was quantified in "nidus" vessels. The interaction events between Notch receptors and their ligands were quantified using proximity ligation assay. There was a positive correlation between WSS and time (r = 0.97; P < 0.001). The expression of Notch receptors and their ligands was upregulated following AVF formation. There was a positive correlation between time and the number of interactions between Notch receptors and their ligands aftre AVF formation (r = 0.62, P < 0.05) and a positive correlation between WSS and the number of interactions between Notch receptors and their ligands (r = 0.87, P < 0.005). In conclusion, an increasing WSS may contribute to the angiogenesis of AVMs by activation of Notch signaling.


Generation of human embryonic stem cell line with heterozygous RB1 deletion by CRIPSR/Cas9 nickase.

  • Jian Tu‎ et al.
  • Stem cell research‎
  • 2018‎

The Retinoblastoma 1 (RB1) tumor suppressor, a member of the Retinoblastoma gene family, functions as a pocket protein for the functional binding of E2F transcription factors. About 1/3 of retinoblastoma patients harbor a germline RB1 mutation or deletion, leading to the development of retinoblastoma. Here, we demonstrate generation of a heterozygous deletion of the RB1 gene in the H1 human embryonic stem cell line using CRISPR/Cas9 nickase genome editing. The RB1 heterozygous knockout H1 cell line shows a normal karyotype, maintains a pluripotent state, and is capable of differentiation to the three germline layers.


Effects of probiotics on cecal microbiome profile altered by duck Escherichia coli 17 infection in Cherry Valley ducks.

  • Shuiqin Shi‎ et al.
  • Microbial pathogenesis‎
  • 2020‎

Avian colibacillosis is one of the most serious infectious bacterial diseases that endanger the modern poultry industry. Lactobacillus is believed to inhibit intestinal pathogens and maintain a healthy gut microbiota. This study aimed to investigate Lactobacillus supplementation in Cherry Valley ducks to prevent the intestinal flora dysbiosis caused by Duck Escherichia coli 17. One hundred and twenty healthy one day old Cherry Valley ducks were randomized to three study groups (Group I = the control group; Group II = duck Escherichia coli 17 challenge group and Group III = DE17 challenge group supplemented with lactic acid bacteria composite preparation). Cherry Valley ducks in Group II and Group III were gavage challenged with DE17 (1 × 105 CFU/mL) on day 14. Pyrosequencing of the V3/V4 variable regions of the genes encoding for 16S rRNA was used for sequence analysis. The results showed that the normal intestinal microecology was affected by DE17, including a relative increase in proteobacteria. At the same time, the Lactobacillales were increased and harmful bacteria were decreased in different intestinal segments of ducks in Group III, compared to those in Group II. Network analysis showed that dietary lactic acid bacteria addition improved the interaction pattern within the cecal microbiota of ducks and the result showed that in Ruminococcus_2 was independently present in the group III and Lachnospiraceae_NK4A136_group species correlation existed between group I and group III. This study proved that oral supplementation with Lactobacillus casei 1.2435, Lactobacillus rhamnosus 621 and Lactobacillus rhamnosus A4 can mitigate DE17 induced intestinal flora dysbiosis.


The ETT2 transcriptional regulator EivF affects the serum resistance and pathogenicity of avian pathogenic Escherichia coli.

  • Dandan Fu‎ et al.
  • Microbial pathogenesis‎
  • 2021‎

Avian pathogenic Escherichia coli (APEC), a pathotype of extraintestinal pathogenic Escherichia coli (ExPEC), can cause serious systemic infectious diseases in poultry. Escherichia coli type III secretion system 2 (ETT2) is widely distributed in E. coli strains, including ExPEC and Enterohemorrhagic Escherichia coli (EHEC). The transcriptional regulator EivF, which is located at the ETT2 cluster, affects the secretion of LEE-encoded proteins and increases bacterial adhesion to human intestinal epithelial cells in EHEC O157:H7. In a previous study, we demonstrated the transcriptional regulator can affect APEC's motility and biofilm formation. Here, we evaluated whether EivF is involved in the pathogenicity of APEC, and we found that inactivation of eivF significantly enhanced resistance to the serum, adherence to chicken embryo fibroblast (DF-1) cells, and the colonization ability of APEC in chicks. To further clarify the regulation mechanism of transcriptional regulator EivF, we performed transcriptome sequencing to analyze the differentially expressed genes and pathways, showing that EivF regulates membrane, adhesion, environmental stress, and secretion protein genes, and EivF is involved in the localization, biological adhesion, biological regulation, membrane, and toxin activity. These findings indicated that the ETT2 transcriptional regulator EivF plays a crucial role in the pathogenicity of APEC as a negative repressor.


Rewired m6A epitranscriptomic networks link mutant p53 to neoplastic transformation.

  • An Xu‎ et al.
  • Nature communications‎
  • 2023‎

N6-methyladenosine (m6A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m6A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m6A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m6A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.


Generation of an induced pluripotent stem cell line from an individual with a heterozygous RECQL4 mutation.

  • Brittany E Jewell‎ et al.
  • Stem cell research‎
  • 2018‎

The DNA helicase RECQL4 is known for its roles in DNA replication and repair. RECQL4 mutations cause several genetic disorders including Rothmund-Thomson syndrome (RTS), characterized by developmental defects and predisposition to osteosarcoma. Here we reprogrammed fibroblasts with a heterozygous RECQL4 mutation (c.1878 + 32_1878 + 55del24) to induced pluripotent stem cells (iPSCs). These iPSCs are pluripotent and are able to be differentiated into all three germ layers, providing a novel tool to further interrogate the role of RECQL4 DNA helicase in vitro.


Distribution Analyzer, a methodology for identifying and clustering outlier conditions from single-cell distributions, and its application to a Nanog reporter RNAi screen.

  • Julian A Gingold‎ et al.
  • BMC bioinformatics‎
  • 2015‎

Chemical or small interfering (si) RNA screens measure the effects of many independent experimental conditions, each applied to a population of cells (e.g., all of the cells in a well). High-content screens permit a readout (e.g., fluorescence, luminescence, cell morphology) from each cell in the population. Most analysis approaches compare the average effect on each population, precluding identification of outliers that affect the distribution of the reporter in the population but not its average. Other approaches only measure changes to the distribution with a single parameter, precluding accurate distinction and clustering of interesting outlier distributions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: