Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro.

  • Daniela Cihalova‎ et al.
  • PloS one‎
  • 2013‎

Cyclin-dependent kinase inhibitors (CDKi) have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032) with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine) synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i) CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii) native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors.


Olomoucine II, but not purvalanol A, is transported by breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1).

  • Jakub Hofman‎ et al.
  • PloS one‎
  • 2013‎

Purine cyclin-dependent kinase inhibitors have been recognized as promising candidates for the treatment of various cancers; nevertheless, data regarding interaction of these substances with drug efflux transporters is still lacking. Recently, we have demonstrated inhibition of breast cancer resistance protein (ABCG2) by olomoucine II and purvalanol A and shown that these compounds are able to synergistically potentiate the antiproliferative effect of mitoxantrone, an ABCG2 substrate. In this follow up study, we investigated whether olomoucine II and purvalanol A are transported by ABCG2 and ABCB1 (P-glycoprotein). Using monolayers of MDCKII cells stably expressing human ABCB1 or ABCG2, we demonstrated that olomoucine II, but not purvalanol A, is a dual substrate of both ABCG2 and ABCB1. We, therefore, assume that pharmacokinetics of olomoucine II will be affected by both ABCB1 and ABCG2 transport proteins, which might potentially result in limited accumulation of the compound in tumor tissues or lead to drug-drug interactions. Pharmacokinetic behavior of purvalanol A, on the other hand, does not seem to be affected by either ABCG2 or ABCB1, theoretically favoring this drug in the potential treatment of efflux transporter-based multidrug resistant tumors. In addition, we observed intensive sulfatation of olomoucine II in MDCKII cell lines with subsequent active efflux of the metabolite out of the cells. Therefore, care should be taken when performing pharmacokinetic studies in MDCKII cells, especially if radiolabeled substrates are used; the generated sulfated conjugate may largely contaminate pharmacokinetic analysis and result in misleading interpretation. With regard to chemical structures of olomoucine II and purvalanol A, our data emphasize that even drugs with remarkable structure similarity may show different pharmacokinetic behavior such as interactions with ABC transporters or biotransformation enzymes.


Novel Method for the Separation of Male and Female Gametocytes of the Malaria Parasite Plasmodium falciparum That Enables Biological and Drug Discovery.

  • Melanie C Ridgway‎ et al.
  • mSphere‎
  • 2020‎

We developed a flow-cytometry-based method to separate and collect cocultured male and female Plasmodium falciparum gametocytes responsible for malaria transmission. The purity of the collected cells was estimated at >97% using flow cytometry, and sorted cells were observed by Giemsa-stained thin-smear and live-cell fluorescence microscopy. The expression of validated sex-specific markers corroborated the sorting strategy. Collected male and female gametocytes were used to confirm three novel sex-specific markers by quantitative real-time PCR that were more enriched in sorted male and female gametocyte populations than existing sex-specific markers. We also applied the method as a proof-of-principle drug screen that allows the identification of drugs that kill gametocytes in a sex-specific manner. Since the developed method allowed for the separation of male and female parasites from the same culture, we observed for the first time a difference in development time between the sexes: females developed faster than males. Hence, the ability to separate male and female gametocytes opens the door to a new field of sex-specific P. falciparum gametocyte biology to further our understanding of malaria transmission.IMPORTANCE The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology.


A screen of drug-like molecules identifies chemically diverse electron transport chain inhibitors in apicomplexan parasites.

  • Jenni A Hayward‎ et al.
  • PLoS pathogens‎
  • 2023‎

Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: