Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Characterization of bovine FUT7 furthers understanding of FUT7 evolution in mammals.

  • Benoît Laporte‎ et al.
  • BMC genetics‎
  • 2012‎

The Sialyl-Lewis X (Slex) is a well-known glycan structure involved in leukocyte homing and recruitment to inflammatory sites. SLex is well conserved among species and is mainly synthesized by FucT-VII in vertebrates. The enzyme responsible for its biosynthesis in cattle was not known.


Circulating PCSK9 levels are not associated with the severity of hepatic steatosis and NASH in a high-risk population.

  • Matthieu Wargny‎ et al.
  • Atherosclerosis‎
  • 2018‎

Some studies suggested that proprotein convertase subtilisin kexin type 9 (PCSK9) is linked to liver steatosis severity and non-alcoholic steatohepatitis (NASH). We aimed to assess whether circulating PCSK9 levels are associated with either liver fat content (LFC) or histological markers of NASH in high-risk patients.


Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.

  • Anne Harduin-Lepers‎ et al.
  • BMC evolutionary biology‎
  • 2008‎

The animal sialyltransferases, which catalyze the transfer of sialic acid to the glycan moiety of glycoconjugates, are subdivided into four families: ST3Gal, ST6Gal, ST6GalNAc and ST8Sia, based on acceptor sugar specificity and glycosidic linkage formed. Despite low overall sequence identity between each sialyltransferase family, all sialyltransferases share four conserved peptide motifs (L, S, III and VS) that serve as hallmarks for the identification of the sialyltransferases. Currently, twenty subfamilies have been described in mammals and birds. Examples of the four sialyltransferase families have also been found in invertebrates. Focusing on the ST8Sia family, we investigated the origin of the three groups of alpha2,8-sialyltransferases demonstrated in vertebrates to carry out poly-, oligo- and mono-alpha2,8-sialylation.


Interplay between Liver X Receptor and Hypoxia Inducible Factor 1α Potentiates Interleukin-1β Production in Human Macrophages.

  • Louise Ménégaut‎ et al.
  • Cell reports‎
  • 2020‎

Low-grade inflammation is constitutive of atherosclerosis, and anti-inflammatory therapy inhibiting interleukin-1β (IL-1β) reduces the rate of cardiovascular events. While cholesterol accumulation in atheroma plaque and macrophages is a major driver of the inflammatory process, the role of the LXR cholesterol sensors remains to be clarified. Murine and human macrophages were treated with LXR agonists for 48 h before Toll-like receptor (TLR) stimulation. Unexpectedly, we observe that, among other cytokines, LXR agonists selectively increase IL1B mRNA levels independently of TLR activation. This effect, restricted to human macrophages, is mediated by activation of HIF-1α through LXR. Accordingly, LXR agonists also potentiate other HIF-1α-dependent pathways, such as glycolysis. Treatment of human macrophages with carotid plaque homogenates also leads to induction of IL1B in an LXR-dependent manner. Thus, our work discloses a mechanism by which cholesterol and oxysterols trigger inflammation in atherosclerosis. This suggests perspectives to target IL-1β production in atherosclerotic patients.


Personality types in individuals with type 1 and type 2 diabetes.

  • Alexia Rouland‎ et al.
  • Endocrine connections‎
  • 2020‎

The Type A personality, characterized by impatience, strong career ambition and competitiveness, is associated with greater sensitivity to external stress. Type 1 diabetes (T1D) is an auto-immune disease, which is potentially influenced by stress, unlike type 2 diabetes (T2D). The aim of this study was to assess whether individuals with T1D and T2D exhibited significant differences on the Type A personality scale. We also assessed the personality in patients with thyroid auto-immune diseases to validate potential links between auto-immune disease and Type A.


Multiplex coherent anti-Stokes Raman scattering highlights state of chromatin condensation in CH region.

  • Tiffany Guerenne-Del Ben‎ et al.
  • Scientific reports‎
  • 2019‎

Coherent Raman microscopy has become a powerful tool in label-free, non-destructive and fast cell imaging. Here we apply high spectral resolution multiplex coherent anti-Stokes Raman scattering (MCARS) microspectroscopy in the high wavenumber region to the study of the cell cycle. We show that heterochromatin - the condensed state of chromatin - can be visualised by means of the vibrational signature of proteins taking part in its condensation. Thus, we are able to identify chromosomes and their movement during mitosis, as well as structures like nucleoli and nuclear border in interphase. Furthermore, the specific organization of the endoplasmic reticulum during mitosis is highlighted. Finally, we stress that MCARS can reveal the biochemical impact of the fixative method at the cellular level. Beyond the study of the cell cycle, this work introduces a label-free imaging approach that enables the visualization of cellular processes where chromatin undergoes rearrangements.


Profiling of lipid mediators in atherosclerotic carotid plaques from type 2 diabetic and non-diabetic patients.

  • Louise Ménégaut‎ et al.
  • Prostaglandins, leukotrienes, and essential fatty acids‎
  • 2022‎

Diabetes is associated with an accelerated development of atherosclerosis. Specific mechanisms related to diabetes and hyperglycemia may play a role in this process. In particular, alterations of arachidonic acid (AA) metabolism have been reported. Our main goal was to investigate for differences in the concentration of LTB4 and RvD1 as well as selected cyclooxygenase-derived mediators in carotid plaques from diabetic and non-diabetic patients. We also aimed to analyze the relationship between omega 6 and omega 3 Poly-Unsaturated Fatty acids (PUFAs) content in the plaques and the concentrations of these lipid mediators.


Coherent anti-Stokes Raman scattering cell imaging and segmentation with unsupervised data analysis.

  • Damien Boildieu‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2022‎

Coherent Raman imaging has been extensively applied to live-cell imaging in the last 2 decades, allowing to probe the intracellular lipid, protein, nucleic acid, and water content with a high-acquisition rate and sensitivity. In this context, multiplex coherent anti-Stokes Raman scattering (MCARS) microspectroscopy using sub-nanosecond laser pulses is now recognized as a mature and straightforward technology for label-free bioimaging, offering the high spectral resolution of conventional Raman spectroscopy with reduced acquisition time. Here, we introduce the combination of the MCARS imaging technique with unsupervised data analysis based on multivariate curve resolution (MCR). The MCR process is implemented under the classical signal non-negativity constraint and, even more originally, under a new spatial constraint based on cell segmentation. We thus introduce a new methodology for hyperspectral cell imaging and segmentation, based on a simple, unsupervised workflow without any spectrum-to-spectrum phase retrieval computation. We first assess the robustness of our approach by considering cells of different types, namely, from the human HEK293 and murine C2C12 lines. To evaluate its applicability over a broader range, we then study HEK293 cells in different physiological states and experimental situations. Specifically, we compare an interphasic cell with a mitotic (prophase) one. We also present a comparison between a fixed cell and a living cell, in order to visualize the potential changes induced by the fixation protocol in cellular architecture. Next, with the aim of assessing more precisely the sensitivity of our approach, we study HEK293 living cells overexpressing tropomyosin-related kinase B (TrkB), a cancer-related membrane receptor, depending on the presence of its ligand, brain-derived neurotrophic factor (BDNF). Finally, the segmentation capability of the approach is evaluated in the case of a single cell and also by considering cell clusters of various sizes.


Bovine TWINKLE and mitochondrial ribosomal protein L43 genes are regulated by an evolutionary conserved bidirectional promoter.

  • Cédric Meersseman‎ et al.
  • Gene‎
  • 2014‎

TWINKLE is a mitochondrial DNA helicase playing an important role in mitochondrial DNA replication. In human, mutations in this gene cause progressive external ophtalmoplegia and mitochondrial DNA depletion syndrome-7. TWINKLE is well conserved among multicellular eukaryotes and is believed to be a key regulator of mitochondrial DNA copy number in mammals. Despite its involvement in several diseases and its important function in mitochondrial DNA metabolism, nothing is known about the regulation of the expression of TWINKLE. We have analysed the 5'-flanking genomic region of the bovine TWINKLE gene and found it was localised adjacent to the MRPL43 gene in a head-to-head orientation, suggesting that both genes are regulated by a shared bidirectional promoter. The bovine 75-bp long intergenic region shows substantial homology across different species and contains several conserved putative transcription factor binding sites. A TATA box, however, was lacking. Using a dual fluorescent reporter system and transient transfection assays, we have analysed the bovine intergenic region between TWINKLE and MRPL43. This small genomic fragment showed a bidirectional promoter activity. As the TWINKLE/MRPL43 bidirectional promoter tested was highly conserved, it is likely that the results we obtained here in cattle may be extended to the other species.


Involvement of ST6Gal I-mediated α2,6 sialylation in myoblast proliferation and differentiation.

  • Caroline Vergé‎ et al.
  • FEBS open bio‎
  • 2020‎

Myogenesis is a physiological process which involves the proliferation of myoblasts and their differentiation into multinucleated myotubes, which constitute the future muscle fibers. Commitment of myoblasts to differentiation is regulated by the balance between the myogenic factors Pax7 and MyoD. The formation of myotubes requires the presence of glycans, especially N-glycans, on the cell surface. We examined here the involvement of α2,6 sialylation during murine myoblastic C2C12 cell differentiation by generating a st6gal1-knockdown C2C12 cell line; these cells exhibit reduced proliferative potential and precocious differentiation due to the low expression of Pax7. The earlier fusion of st6gal1-knockdown cells leads to a high fusion index and a drop in reserve cells (Pax7+ /MyoD- ). In st6gal1-knockdown cells, the Notch pathway is inactivated; consequently, Pax7 expression is virtually abolished, leading to impairment of the proliferation rate. All these results indicate that the decrease in α2,6 sialylation of N-glycans favors the differentiation of most cells and provokes a significant loss of reserve cells.


Genetic variability of the activity of bidirectional promoters: a pilot study in bovine muscle.

  • Cédric Meersseman‎ et al.
  • DNA research : an international journal for rapid publication of reports on genes and genomes‎
  • 2017‎

Bidirectional promoters are regulatory regions co-regulating the expression of two neighbouring genes organized in a head-to-head orientation. In recent years, these regulatory regions have been studied in many organisms; however, no investigation to date has been done to analyse the genetic variation of the activity of this type of promoter regions. In our study, we conducted an investigation to first identify bidirectional promoters sharing genes expressed in bovine Longissimus thoracis and then to find genetic variants affecting the activity of some of these bidirectional promoters. Combining bovine gene information and expression data obtained using RNA-Seq, we identified 120 putative bidirectional promoters active in bovine muscle. We experimentally validated in vitro 16 of these bidirectional promoters. Finally, using gene expression and whole-genome genotyping data, we explored the variability of the activity in muscle of the identified bidirectional promoters and discovered genetic variants affecting their activity. We found that the expression level of 77 genes is correlated with the activity of 12 bidirectional promoters. We also identified 57 single nucleotide polymorphisms associated with the activity of 5 bidirectional promoters. To our knowledge, our study is the first analysis in any species of the genetic variability of the activity of bidirectional promoters.


Plasma ceramides are associated with MRI-based liver fat content but not with noninvasive scores of liver fibrosis in patients with type 2 diabetes.

  • Damien Denimal‎ et al.
  • Cardiovascular diabetology‎
  • 2023‎

There is growing evidence that ceramides play a significant role in the onset and progression of non-alcoholic fatty liver disease (NAFLD), a highly prevalent condition in patients with type 2 diabetes associated with hepatic and cardiovascular events. However, the relationship between plasma ceramide levels and NAFLD severity in type 2 diabetes remains unclear. The main purpose of the present study was to investigate whether circulating levels of ceramides in patients with type 2 diabetes are associated with liver steatosis assessed by the highly accurate magnetic resonance imaging proton density fat fraction (MRI-PDFF). The secondary objective was to assess the relationship between plasma ceramides and noninvasive scores of liver fibrosis.


Novel Zebrafish Mono-α2,8-sialyltransferase (ST8Sia VIII): An Evolutionary Perspective of α2,8-Sialylation.

  • Lan-Yi Chang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The mammalian mono-α2,8-sialyltransferase ST8Sia VI has been shown to catalyze the transfer of a unique sialic acid residues onto core 1 O-glycans leading to the formation of di-sialylated O-glycosylproteins and to a lesser extent to diSia motifs onto glycolipids like GD1a. Previous studies also reported the identification of an orthologue of the ST8SIA6 gene in the zebrafish genome. Trying to get insights into the biosynthesis and function of the oligo-sialylated glycoproteins during zebrafish development, we cloned and studied this fish α2,8-sialyltransferase homologue. In situ hybridization experiments demonstrate that expression of this gene is always detectable during zebrafish development both in the central nervous system and in non-neuronal tissues. Intriguingly, using biochemical approaches and the newly developed in vitro MicroPlate Sialyltransferase Assay (MPSA), we found that the zebrafish recombinant enzyme does not synthetize diSia motifs on glycoproteins or glycolipids as the human homologue does. Using comparative genomics and molecular phylogeny approaches, we show in this work that the human ST8Sia VI orthologue has disappeared in the ray-finned fish and that the homologue described in fish correspond to a new subfamily of α2,8-sialyltransferase named ST8Sia VIII that was not maintained in Chondrichtyes and Sarcopterygii.


Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses.

  • Daniel Petit‎ et al.
  • Molecular biology and evolution‎
  • 2015‎

Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes' evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I-ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions.


Reconstruction of the sialylation pathway in the ancestor of eukaryotes.

  • Daniel Petit‎ et al.
  • Scientific reports‎
  • 2018‎

The biosynthesis of sialylated molecules of crucial relevance for eukaryotic cell life is achieved by sialyltransferases (ST) of the CAZy family GT29. These enzymes are widespread in the Deuterostoma lineages and more rarely described in Protostoma, Viridiplantae and various protist lineages raising the question of their presence in the Last eukaryotes Common Ancestor (LECA). If so, it is expected that the main enzymes associated with sialic acids metabolism are also present in protists. We conducted phylogenomic and protein sequence analyses to gain insights into the origin and ancient evolution of ST and sialic acid pathway in eukaryotes, Bacteria and Archaea. Our study uncovered the unreported occurrence of bacterial GT29 ST and evidenced the existence of 2 ST groups in the LECA, likely originating from the endosymbiotic event that generated mitochondria. Furthermore, distribution of the major actors of the sialic acid pathway in the different eukaryotic phyla indicated that these were already present in the LECA, which could also access to this essential monosaccharide either endogenously or via a sialin/sialidase uptake mechanism involving vesicles. This pathway was lost in several basal eukaryotic lineages including Archaeplastida despite the presence of two different ST groups likely assigned to other functions.


A phylogenetic view and functional annotation of the animal β1,3-glycosyltransferases of the GT31 CAZy family.

  • Daniel Petit‎ et al.
  • Glycobiology‎
  • 2021‎

The formation of β1,3-linkages on animal glycoconjugates is catalyzed by a subset of β1,3-glycosyltransferases grouped in the Carbohydrate-Active enZYmes family glycosyltransferase-31 (GT31). This family represents an extremely diverse set of β1,3-N-acetylglucosaminyltransferases [B3GNTs and Fringe β1,3-N-acetylglucosaminyltransferases], β1,3-N-acetylgalactosaminyltransferases (B3GALNTs), β1,3-galactosyltransferases [B3GALTs and core 1 β1,3-galactosyltransferases (C1GALTs)], β1,3-glucosyltransferase (B3GLCT) and β1,3-glucuronyl acid transferases (B3GLCATs or CHs). The mammalian enzymes were particularly well studied and shown to use a large variety of sugar donors and acceptor substrates leading to the formation of β1,3-linkages in various glycosylation pathways. In contrast, there are only a few studies related to other metazoan and lower vertebrates GT31 enzymes and the evolutionary relationships of these divergent sequences remain obscure. In this study, we used bioinformatics approaches to identify more than 920 of putative GT31 sequences in Metazoa, Fungi and Choanoflagellata revealing their deep ancestry. Sequence-based analysis shed light on conserved motifs and structural features that are signatures of all the GT31. We leverage pieces of evidence from gene structure, phylogenetic and sequence-based analyses to identify two major subgroups of GT31 named Fringe-related and B3GALT-related and demonstrate the existence of 10 orthologue groups in the Urmetazoa, the hypothetical last common ancestor of all animals. Finally, synteny and paralogy analysis unveiled the existence of 30 subfamilies in vertebrates, among which 5 are new and were named C1GALT2, C1GALT3, B3GALT8, B3GNT10 and B3GNT11. Altogether, these various approaches enabled us to propose the first comprehensive analysis of the metazoan GT31 disentangling their evolutionary relationships.


How have sheep breeds differentiated from each other in Morocco? Genetic structure and geographical distribution patterns.

  • Asmae Kandoussi‎ et al.
  • Genetics, selection, evolution : GSE‎
  • 2021‎

Based on the relatively homogeneous origin of the sheep breeds in Morocco that originate mainly from Iberia, it is highly relevant to address the question of how these very diverse sheep populations differentiated from each other. The Mountains of the High Atlas and Middle Atlas are expected to constitute North-South and West-East geographical barriers, respectively, which could have shaped the history of the differentiation of sheep breeds. The aim of this study was to test this hypothesis by considering the genetic structure and the spatial distribution of five major breeds (Sardi, Timahdite, Beni Guil, Boujaad and D'man) and one minor breed (Blanche de Montagne), by analysing the mtDNA control region, using 30 individuals per breed.


Regulation of glycolytic genes in human macrophages by oxysterols: a potential role for liver X receptors.

  • Louise Ménégaut‎ et al.
  • British journal of pharmacology‎
  • 2021‎

Subset of macrophages within the atheroma plaque displays a high glucose uptake activity. Nevertheless, the molecular mechanisms and the pathophysiological significance of this high glucose need remain unclear. While the role for hypoxia and hypoxia inducible factor 1α has been demonstrated, the contribution of lipid micro-environment and more specifically oxysterols is yet to be explored.


Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate β-Galactoside α2,3/6-Sialyltransferases (ST3Gal and ST6Gal).

  • Roxana E Teppa‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Cell surface of eukaryotic cells is covered with a wide variety of sialylated molecules involved in diverse biological processes and taking part in cell-cell interactions. Although the physiological relevance of these sialylated glycoconjugates in vertebrates begins to be deciphered, the origin and evolution of the genetic machinery implicated in their biosynthetic pathway are poorly understood. Among the variety of actors involved in the sialylation machinery, sialyltransferases are key enzymes for the biosynthesis of sialylated molecules. This review focus on β-galactoside α2,3/6-sialyltransferases belonging to the ST3Gal and ST6Gal families. We propose here an outline of the evolutionary history of these two major ST families. Comparative genomics, molecular phylogeny and structural bioinformatics provided insights into the functional innovations in sialic acid metabolism and enabled to explore how ST-gene function evolved in vertebrates.


Highlights of glycosylation and adhesion related genes involved in myogenesis.

  • Vincent Grassot‎ et al.
  • BMC genomics‎
  • 2014‎

Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: