Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 86 papers

Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria.

  • Vamsi K Mootha‎ et al.
  • Cell‎
  • 2003‎

Mitochondria are tailored to meet the metabolic and signaling needs of each cell. To explore its molecular composition, we performed a proteomic survey of mitochondria from mouse brain, heart, kidney, and liver and combined the results with existing gene annotations to produce a list of 591 mitochondrial proteins, including 163 proteins not previously associated with this organelle. The protein expression data were largely concordant with large-scale surveys of RNA abundance and both measures indicate tissue-specific differences in organelle composition. RNA expression profiles across tissues revealed networks of mitochondrial genes that share functional and regulatory mechanisms. We also determined a larger "neighborhood" of genes whose expression is closely correlated to the mitochondrial genes. The combined analysis identifies specific genes of biological interest, such as candidates for mtDNA repair enzymes, offers new insights into the biogenesis and ancestry of mammalian mitochondria, and provides a framework for understanding the organelle's contribution to human disease.


A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes.

  • Roberto Zoncu‎ et al.
  • Cell‎
  • 2009‎

The recent identification of several novel endocytic compartments has challenged our current understanding of the topological and functional organization of the endocytic pathway. Using quantitative single vesicle imaging and acute manipulation of phosphoinositides we show that APPL endosomes, which participate in growth factor receptor trafficking and signaling, represent an early endocytic intermediate common to a subset of clathrin derived endocytic vesicles and macropinosomes. Most APPL endosomes are precursors of classical PI3P positive endosomes, and PI3P plays a critical role in promoting this conversion. Depletion of PI3P causes a striking reversion of Rab5 positive endosomes to the APPL stage, and results in enhanced growth factor signaling. These findings reveal a surprising plasticity of the early endocytic pathway. Importantly, PI3P functions as a switch to dynamically regulate maturation and signaling of APPL endosomes.


MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake.

  • Fabiana Perocchi‎ et al.
  • Nature‎
  • 2010‎

Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.


A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.

  • Ramiro Nández‎ et al.
  • eLife‎
  • 2014‎

Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations.


TXNIP regulates peripheral glucose metabolism in humans.

  • Hemang Parikh‎ et al.
  • PLoS medicine‎
  • 2007‎

Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure.


Exploring the In Vivo Role of the Mitochondrial Calcium Uniporter in Brown Fat Bioenergetics.

  • Daniel Flicker‎ et al.
  • Cell reports‎
  • 2019‎

The mitochondrial calcium uniporter has been proposed to coordinate the organelle's energetics with calcium signaling. Uniporter current has previously been reported to be extremely high in brown adipose tissue (BAT), yet it remains unknown how the uniporter contributes to BAT physiology. Here, we report the generation and characterization of a mouse model lacking Mcu, the pore forming subunit of the uniporter, specifically in BAT (BAT-Mcu-KO). BAT-Mcu-KO mice lack uniporter-based calcium uptake in BAT mitochondria but exhibit unaffected cold tolerance, diet-induced obesity, and transcriptional response to cold in BAT. Unexpectedly, we found in wild-type animals that cold powerfully activates the ATF4-dependent integrated stress response (ISR) in BAT and upregulates circulating FGF21 and GDF15, raising the hypothesis that the ISR partly underlies the pleiotropic effects of BAT on systemic metabolism. Our study demonstrates that the uniporter is largely dispensable for BAT thermogenesis and demonstrates activation of the ISR in BAT in response to cold.


Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome.

  • Caterina Garone‎ et al.
  • Human molecular genetics‎
  • 2017‎

Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation.


Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter.

  • Yan Wang‎ et al.
  • eLife‎
  • 2020‎

Mitochondrial Ca2+ uptake is mediated by an inner mitochondrial membrane protein called the mitochondrial calcium uniporter. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+-dependent manner. Here, we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.


Evolutionary divergence reveals the molecular basis of EMRE dependence of the human MCU.

  • Melissa Js MacEwen‎ et al.
  • Life science alliance‎
  • 2020‎

The mitochondrial calcium uniporter (MCU) is a calcium-activated calcium channel critical for signaling and bioenergetics. MCU, the pore-forming subunit of the uniporter, contains two transmembrane domains and is found in all major eukaryotic taxa. In amoeba and fungi, MCU homologs are sufficient to form a functional calcium channel, whereas human MCU exhibits a strict requirement for the metazoan protein essential MCU regulator (EMRE) for conductance. Here, we exploit this evolutionary divergence to decipher the molecular basis of human MCU's dependence on EMRE. By systematically generating chimeric proteins that consist of EMRE-independent Dictyostelium discoideum MCU and Homo sapiens MCU (HsMCU), we converged on a stretch of 10 amino acids in D. discoideum MCU that can be transplanted to HsMCU to render it EMRE independent. We call this region in human MCU the EMRE dependence domain (EDD). Crosslinking experiments show that EMRE directly interacts with HsMCU at its transmembrane domains as well as the EDD. Our results suggest that EMRE stabilizes the EDD of MCU, permitting both channel opening and calcium conductance, consistent with recently published structures of MCU-EMRE.


The Human Knockout Gene CLYBL Connects Itaconate to Vitamin B12.

  • Hongying Shen‎ et al.
  • Cell‎
  • 2017‎

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Validation of a multiplex amplification system of 19 autosomal STRs and 27 Y-STRs.

  • Feng Liu‎ et al.
  • Forensic sciences research‎
  • 2019‎

This article describes a newly devised autosomal short tandem repeat (STR) multiplex polymerase chain reaction (PCR) system for 19 autosomal loci (D12S391, D13S317, D16S539, D18S51, D19S433, D2S1338, D21S11, D3S1358, D5S818, D6S1043, D7S820, D8S1179, CSF1PO, FGA, TH01, TPOX, vWA, Penta D and Penta E), 27 Y-chromosome STR loci (DYS19, DYS385, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS449, DYS456, DYS458, DYS460, DYS481, DYS518, DYS533, DYS570, DYS576, DYS635, DYS627, YGATAH4 and DYF387S1) and amelogenin with six-colour fluorescent labelling. Various parameters were evaluated, such as its accuracy, sensitivity, specificity, stability, ability to analysis of mixtures and effects of changes in the PCR-based procedures. All of the 47 selected STR loci were accurately and robustly amplified from 282 bloodstain samples. The species-specificity was high and some ability to inhibit Hematin was identified. The lowest detectable DNA amount was ≥0.125 ng. All of the male loci of the secondary component were revealed precisely when the control DNA was mixed at male/female and male/male ratios of 1:4 or more. We conclude that the present 19-plex autosomal STR and 27 Y-STR assay is both accurate and sensitive. It constitutes an additional powerful tool for forensic applications.


Impaired hypoxic pulmonary vasoconstriction in a mouse model of Leigh syndrome.

  • Grigorij Schleifer‎ et al.
  • American journal of physiology. Lung cellular and molecular physiology‎
  • 2019‎

Hypoxic pulmonary vasoconstriction (HPV) is a physiological vasomotor response that maintains systemic oxygenation by matching perfusion to ventilation during alveolar hypoxia. Although mitochondria appear to play an essential role in HPV, the impact of mitochondrial dysfunction on HPV remains incompletely defined. Mice lacking the mitochondrial complex I (CI) subunit Ndufs4 ( Ndufs4-/-) develop a fatal progressive encephalopathy and serve as a model for Leigh syndrome, the most common mitochondrial disease in children. Breathing normobaric 11% O2 prevents neurological disease and improves survival in Ndufs4-/- mice. In this study, we found that either genetic Ndufs4 deficiency or pharmacological inhibition of CI using piericidin A impaired the ability of left mainstem bronchus occlusion (LMBO) to induce HPV. In mice breathing air, the partial pressure of arterial oxygen during LMBO was lower in Ndufs4-/- and in piericidin A-treated Ndufs4+/+ mice than in respective controls. Impairment of HPV in Ndufs4-/- mice was not a result of nonspecific dysfunction of the pulmonary vascular contractile apparatus or pulmonary inflammation. In Ndufs4-deficient mice, 3 wk of breathing 11% O2 restored HPV in response to LMBO. When compared with Ndufs4-/- mice breathing air, chronic hypoxia improved systemic oxygenation during LMBO. The results of this study show that, when breathing air, mice with a congenital Ndufs4 deficiency or chemically inhibited CI function have impaired HPV. Our study raises the possibility that patients with inborn errors of mitochondrial function may also have defects in HPV.


A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.

  • Beverly Y Mok‎ et al.
  • Nature‎
  • 2020‎

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Lymphoscintigraphy Using Tilmanocept Detects Multiple Sentinel Lymph Nodes in Melanoma Patients.

  • Daniel M Balkin‎ et al.
  • Cancer control : journal of the Moffitt Cancer Center‎
  • 2023‎

Technetium-99m-labeled Tilmanocept, a multivalent mannose, is readily internalized by the CD206 surface receptor on macrophages and dendritic cells which are abundantly present in lymph nodes. We want to examine the drainage patterns of Technetium-99m-labeled Tilmanocept to sentinel lymph nodes (SLNs) in melanoma patients following the 10% rule.


Congenital Hypermetabolism and Uncoupled Oxidative Phosphorylation.

  • Rebecca D Ganetzky‎ et al.
  • The New England journal of medicine‎
  • 2022‎

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the β subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Nuclear genetic control of mtDNA copy number and heteroplasmy in humans.

  • Rahul Gupta‎ et al.
  • Nature‎
  • 2023‎

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.


METTL17 is an Fe-S cluster checkpoint for mitochondrial translation.

  • Tslil Ast‎ et al.
  • Molecular cell‎
  • 2024‎

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation.

  • Liang Wei Wang‎ et al.
  • Cell metabolism‎
  • 2019‎

Epstein-Barr virus (EBV) causes Burkitt, Hodgkin, and post-transplant B cell lymphomas. How EBV remodels metabolic pathways to support rapid B cell outgrowth remains largely unknown. To gain insights, primary human B cells were profiled by tandem-mass-tag-based proteomics at rest and at nine time points after infection; >8,000 host and 29 viral proteins were quantified, revealing mitochondrial remodeling and induction of one-carbon (1C) metabolism. EBV-encoded EBNA2 and its target MYC were required for upregulation of the central mitochondrial 1C enzyme MTHFD2, which played key roles in EBV-driven B cell growth and survival. MTHFD2 was critical for maintaining elevated NADPH levels in infected cells, and oxidation of mitochondrial NADPH diminished B cell proliferation. Tracing studies underscored contributions of 1C to nucleotide synthesis, NADPH production, and redox defense. EBV upregulated import and synthesis of serine to augment 1C flux. Our results highlight EBV-induced 1C as a potential therapeutic target and provide a new paradigm for viral onco-metabolism.


MCU encodes the pore conducting mitochondrial calcium currents.

  • Dipayan Chaudhuri‎ et al.
  • eLife‎
  • 2013‎

Mitochondrial calcium (Ca(2+)) import is a well-described phenomenon regulating cell survival and ATP production. Of multiple pathways allowing such entry, the mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective channel complex encoded by several recently-discovered genes. However, the identity of the pore-forming subunit remains to be established, since knockdown of all the candidate uniporter genes inhibit Ca(2+) uptake in imaging assays, and reconstitution experiments have been equivocal. To definitively identify the channel, we use whole-mitoplast voltage-clamping, the technique that originally established the uniporter as a Ca(2+) channel. We show that RNAi-mediated knockdown of the mitochondrial calcium uniporter (MCU) gene reduces mitochondrial Ca(2+) current (I MiCa ), whereas overexpression increases it. Additionally, a classic feature of I MiCa , its sensitivity to ruthenium red inhibition, can be abolished by a point mutation in the putative pore domain without altering current magnitude. These analyses establish that MCU encodes the pore-forming subunit of the uniporter channel. DOI:http://dx.doi.org/10.7554/eLife.00704.001.


Meclizine Preconditioning Protects the Kidney Against Ischemia-Reperfusion Injury.

  • Seiji Kishi‎ et al.
  • EBioMedicine‎
  • 2015‎

Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respiration may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine, an over-the-counter anti-nausea and -dizziness drug, was identified in a 'nutrient-sensitized' chemical screen. Pretreatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at 24 h after IRI were 0.13 ± 0.06 mg/dl (sham, n = 3), 1.59 ± 0.10 mg/dl (vehicle, n = 8) and 0.89 ± 0.11 mg/dl (meclizine, n = 8). Kidney injury was significantly decreased in meclizine treated mice compared with vehicle group (p < 0.001). Protection was also seen when meclizine was administered 24 h prior to ischemia. Meclizine reduced inflammation, mitochondrial oxygen consumption, oxidative stress, mitochondrial fragmentation, and tubular injury. Meclizine preconditioned kidney tubular epithelial cells, exposed to blockade of glycolytic and oxidative metabolism with 2-deoxyglucose and NaCN, had reduced LDH and cytochrome c release. Meclizine upregulated glycolysis in glucose-containing media and reduced cellular ATP levels in galactose-containing media. Meclizine inhibited the Kennedy pathway and caused rapid accumulation of phosphoethanolamine. Phosphoethanolamine recapitulated meclizine-induced protection both in vitro and in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: