Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals.

  • Evaggelia Liaskou‎ et al.
  • Scientific reports‎
  • 2017‎

The CD28 locus is associated with susceptibility to a variety of autoimmune and immune-mediated inflammatory diseases including primary sclerosing cholangitis (PSC). Previously, we linked the CD28 pathway in PSC disease pathology and found that vitamin D could maintain CD28 expression. Here, we assessed whether the PSC-associated CD28 risk variant A (rs7426056) affects CD28 expression and T cell function in healthy individuals (n = 14 AA, n = 14 AG, n = 14 GG). Homozygotes for the PSC disease risk allele (AA) showed significantly lower CD28 mRNA expression ex-vivo than either GG or AG (p < 0.001) in total peripheral blood mononuclear cells. However, the CD28 risk variant alone was not sufficient to explain CD28 protein loss on CD4+ T cells. All genotypes responded equally to vitamin D as indicated by induction of a regulatory phenotype and an increased anti-inflammatory/pro-inflammatory cytokine ratio. A genotypic effect on response to TNFα stimuli was detected, which was inhibited by vitamin D. Together our results show: (a) an altered gene expression in carriers of the susceptible CD28 variant, (b) no differences in protein levels on CD4+ T cells, and


Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis.

  • Haibin Guo‎ et al.
  • Scientific reports‎
  • 2017‎

Polyploid rice hybrids have a powerful biological and yield potential that may become a new way for rice breeding; however, low fertility is major hindrance in commercial utilization. Here, we developed a neo-tetraploid rice that could overcome the sterility of autotetraploid rice and produce high heterosis. Transcriptome analysis of F1 hybrid developed by crossing neo-tetraploid with autotetraploid rice displayed 807, 663 and 866 differentially expressed genes that uniquely associated with F1 and specific to (DEGFu-sp) anther, ovary and leaf, respectively. Of the DEGFu-sp, 1224 genes displayed nonadditive expression; 44 and 10 genes were annotated as TFs and methyltransferase or hydroxymethyltransferase, respectively. Gene ontology enrichment and co-expression analysis revealed specific differential gene expressions in the DEGFu-sp to leaf, anther and ovary, such as genes related to photosynthesis, metabolic process and transport, and co-expression network including fertility, resistance and epigenetic elements. Of the DEGFu-sp to anther, 42 meiosis stage-specific genes, eight meiosis-related genes, such as RAD51 and SMC2, were identified. We identified 38 miRNAs from DEGFu-sp to anther, and their targets were associated with pollen fertility and retrotransposon protein. Our study provides new germplasm for polyploid rice breeding, and revealed complex regulatory mechanisms that might be associated with heterosis and fertility.


Investigation of Pathogenic Genes in Chinese sporadic Hypertrophic Cardiomyopathy Patients by Whole Exome Sequencing.

  • Jing Xu‎ et al.
  • Scientific reports‎
  • 2015‎

Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with high heterogeneity. Limited knowledge concerning the genetic background of nearly 40% HCM cases indicates there is a clear need for further investigation to explore the genetic pathogenesis of the disease. In this study, we undertook a whole exome sequencing (WES) approach to identify novel candidate genes and mutations associated with HCM. The cohort consisted of 74 unrelated patients with sporadic HCM (sHCM) previously determined to be negative for mutations in eight sarcomere genes. The results showed that 7 of 74 patients (9.5%) had damaging mutations in 43 known HCM disease genes. Furthermore, after analysis combining the Transmission and De novo Association (TADA) program and the ToppGene program, 10 putative genes gained priority. A thorough review of public databases and related literature revealed that there is strong supporting evidence for most of the genes playing roles in various aspects of heart development. Findings from recent studies suggest that the putative and known disease genes converge on three functional pathways: sarcomere function, calcium signaling and metabolism pathway. This study illustrates the benefit of WES, in combination with rare variant analysis tools, in providing valuable insight into the genetic etiology of a heterogeneous sporadic disease.


The orientation and stability of the GPCR-Arrestin complex in a lipid bilayer.

  • Dali Wang‎ et al.
  • Scientific reports‎
  • 2017‎

G protein-coupled receptors (GPCRs) constitute a large family of membrane proteins that plays a key role in transmembrane signal transduction and draw wide attention since it was discovered. Arrestin is a small family of proteins which can bind to GPCRs, block G protein interactions and redirect signaling to G-protein-independent pathways. The detailed mechanism of how arrestin interacts with GPCR remains elusive. Here, we conducted molecular dynamics simulations with coarse-grained (CG) and all-atom (AA) models to study the complex structure formed by arrestin and rhodopsin, a prototypical GPCR, in a POPC bilayer. Our results indicate that the formation of the complex has a significant impact on arrestin which is tightly anchored onto the bilayer surface, while has a minor effect on the orientation of rhodopsin in the lipid bilayer. The formation of the complex induces an internal change of conformation and flexibility in both rhodopsin and arrestin, mainly at the binding interface. Further investigation on the interaction interface identified the hydrogen bond network, especially the long-lived hydrogen bonds, and the key residues at the contact interface, which are responsible for stabilizing the complex. These results help us to better understand how rhodopsin interacts with arrestin on membranes, and thereby shed lights on arrestin-mediated signal transduction through GPCRs.


A Common Variant in CLDN14 is Associated with Primary Biliary Cirrhosis and Bone Mineral Density.

  • Ruqi Tang‎ et al.
  • Scientific reports‎
  • 2016‎

Primary biliary cirrhosis (PBC), a chronic autoimmune liver disease, has been associated with increased incidence of osteoporosis. Intriguingly, two PBC susceptibility loci identified through genome-wide association studies are also involved in bone mineral density (BMD). These observations led us to investigate the genetic variants shared between PBC and BMD. We evaluated 72 genome-wide significant BMD SNPs for association with PBC using two European GWAS data sets (n = 8392), with replication of significant findings in a Chinese cohort (685 cases, 1152 controls). Our analysis identified a novel variant in the intron of the CLDN14 gene (rs170183, Pfdr = 0.015) after multiple testing correction. The three associated variants were followed-up in the Chinese cohort; one SNP rs170183 demonstrated consistent evidence of association in diverse ethnic populations (Pcombined = 2.43 × 10(-5)). Notably, expression quantitative trait loci (eQTL) data revealed that rs170183 was correlated with a decline in CLDN14 expression in both lymphoblastoid cell lines and T cells (Padj = 0.003 and 0.016, respectively). In conclusion, our study identified a novel PBC susceptibility variant that has been shown to be strongly associated with BMD, highlighting the potential of pleiotropy to improve gene discovery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: