Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner.

  • Piriya Yoganathan‎ et al.
  • Nutrition & metabolism‎
  • 2012‎

Genome-wide association studies (GWAS) have recently identified several new genetic variants associated with obesity. The majority of the variants are within introns or between genes, suggesting they affect gene expression, although it is not clear which of the nearby genes they affect. Understanding the regulation of these genes will be key to determining the role of these variants in the development of obesity and will provide support for a role of these genes in the development of obesity.


Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease.

  • Daniel J O'Shannessy‎ et al.
  • SpringerPlus‎
  • 2012‎

Given that several targeted therapies directed towards folate receptor alpha (FRA) are in late stage clinical development, the sensitive and robust detection of FRA in tissues is of paramount importance relative to patient selection, prognosis and prediction. In the present study we undertook an immunohistochemical evaluation of expression of FRA in breast cancer samples using formalin-fixed, paraffin-embedded (FFPE) tissues, primarily invasive ductal carcinomas, using a newly described monoclonal antibody, 26B3. Samples assessed included both tissue microarrays (TMA) and whole tissue sections from archival tissue blocks. Normal breast shows a highly restricted expression of FRA to luminal membrane staining of secretory ductal cells, consistent with FRA secretion into milk. In early stage (stages I-III) invasive ductal carcinomas, FRA staining was observed in approximately 30% of all samples, independent of molecular subtype (estrogen receptor (ER)/progesterone receptor (PR)/human epidermal growth factor receptor type 2 (Her2)). However, FRA expression was shown to associate with ER/PR negative tumors relative to ER/PR positive tumors (p = 0.012) and perhaps more importantly, with triple negative breast cancers (TNBC; p < 0.0001). FRA immunoreactivity was also shown to be retained in stage IV metastatic breast cancer samples from diverse anatomic sites including lymph node and bone. In metastatic breast cancer, FRA was shown to be expressed in 86% of TNBC patients. Taken together, these data suggest that FRA expressing breast cancer represents a novel molecular subtype and, further, may represent a new therapeutic target for this devastating disease.


Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity.

  • Heather C Denroche‎ et al.
  • Endocrinology‎
  • 2016‎

Leptin signaling in the central nervous system, and particularly the arcuate hypothalamic nucleus, is important for regulating energy and glucose homeostasis. However, the roles of extra-arcuate leptin responsive neurons are less defined. In the current study, we generated mice with widespread inactivation of the long leptin receptor isoform in the central nervous system via Synapsin promoter-driven Cre (Lepr(flox/flox) Syn-cre mice). Within the hypothalamus, leptin signaling was disrupted in the lateral hypothalamic area (LHA) and ventral premammillary nucleus (PMV) but remained intact in the arcuate hypothalamic nucleus and ventromedial hypothalamic nucleus, dorsomedial hypothalamic nucleus, and nucleus of the tractus solitarius. To investigate the role of LHA/PMV neuronal leptin signaling, we examined glucose and energy homeostasis in Lepr(flox/flox) Syn-cre mice and Lepr(flox/flox) littermates under basal and diet-induced obese conditions and tested the role of LHA/PMV neurons in leptin-mediated glucose lowering in streptozotocin-induced diabetes. Lepr(flox/flox) Syn-cre mice did not have altered body weight or blood glucose levels but were hyperinsulinemic and had enhanced glucagon secretion in response to experimental hypoglycemia. Surprisingly, when placed on a high-fat diet, Lepr(flox/flox) Syn-cre mice were protected from weight gain, glucose intolerance, and diet-induced hyperinsulinemia. Peripheral leptin administration lowered blood glucose in streptozotocin-induced diabetic Lepr(flox/flox) Syn-cre mice as effectively as in Lepr(flox/flox) littermate controls. Collectively these findings suggest that leptin signaling in LHA/PMV neurons is not critical for regulating glucose levels but has an indispensable role in the regulation of insulin and glucagon levels and, may promote the development of diet-induced hyperinsulinemia and weight gain.


Characterization of the human folate receptor alpha via novel antibody-based probes.

  • Daniel J O'Shannessy‎ et al.
  • Oncotarget‎
  • 2011‎

Folate receptor alpha (FRA) is a cell surface protein whose aberrant expression in malignant cells has resulted in its pursuit as a therapeutic target and marker for diagnosis of cancer. The development of immune-based reagents that can reproducibly detect FRA from patient tissue processed by varying methods has been difficult due to the complex post-translational structure of the protein whereby most reagents developed to date are highly structure-sensitive and have resulted in equivocal expression results across independent studies. The aim of the present study was to generate novel monoclonal antibodies (mAbs) using modified full length FRA protein as immunogen in order to develop a panel of mAbs to various, non-overlapping epitopes that may serve as diagnostic reagents able to robustly detect FRA-positive disease. Here we report the development of a panel of FRA-specific mAbs that are able to specifically detect FRA using an array of diagnostic platforms and methods. In addition, the methods used to develop these mAbs and their diverse binding properties provide additional information on the three dimensional structure of FRA in its native cell surface configuration.


Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation.

  • Paul Petrus‎ et al.
  • EBioMedicine‎
  • 2019‎

A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored.


Correlation of FCGRT genomic structure with serum immunoglobulin, albumin and farletuzumab pharmacokinetics in patients with first relapsed ovarian cancer.

  • Daniel J O'Shannessy‎ et al.
  • Genomics‎
  • 2017‎

Farletuzumab (FAR) is a humanized monoclonal antibody (mAb) that binds to folate receptor alpha. A Ph3 trial in ovarian cancer patients treated with carboplatin/taxane plus FAR or placebo did not meet the primary statistical endpoint. Subgroup analysis demonstrated that subjects with high FAR exposure levels (Cmin>57.6μg/mL) showed statistically significant improvements in PFS and OS. The neonatal Fc receptor (fcgrt) plays a central role in albumin/IgG stasis and mAb pharmacokinetics (PK). Here we evaluated fcgrt sequence and association of its promoter variable number tandem repeats (VNTR) and coding single nucleotide variants (SNV) with albumin/IgG levels and FAR PK in the Ph3 patients. A statistical correlation existed between high FAR Cmin and AUC in patients with the highest quartile of albumin and lowest quartile of IgG1. Analysis of fcgrt identified 5 different VNTRs in the promoter region and 9 SNVs within the coding region, 4 which are novel.


The Parsortix™ Cell Separation System-A versatile liquid biopsy platform.

  • M Craig Miller‎ et al.
  • Cytometry. Part A : the journal of the International Society for Analytical Cytology‎
  • 2018‎

Cancer cells from solid tumors can enter the circulatory system and survive to subsequently form distant metastases. The CellSearch® system (Menarini-Silicon Biosystems, Huntingdon Valley, PA) was the first, FDA-cleared system that provided a reliable tool for the investigation of circulating tumor cells (CTCs), which have been shown to be strongly associated with poor survival and therapy failure. Since that time, a number of new technologies have been introduced to improve CTC detection and/or isolation for further characterization. The continued and growing interest in the "liquid biopsy" field has spurred the development of numerous different CTC technologies. However, selecting the most appropriate CTC platform for individual applications can be challenging. No consensus has yet been reached in the community regarding which liquid biopsy technology is optimal. Here, we introduce the Parsortix™ Cell Separation System (ANGLE North America, Inc., King of Prussia, PA), a microfluidic based technology that captures rare cells based on size and deformability, offers reproducibly high capture efficiency, and produces highly enriched, viable (viability dependent on preservative used) CTCs that are amenable to a multitude of downstream analyses, including the isolation and interrogation of single cells. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Co-development of diagnostic vectors to support targeted therapies and theranostics: essential tools in personalized cancer therapy.

  • Nicholas C Nicolaides‎ et al.
  • Frontiers in oncology‎
  • 2014‎

Novel technologies are being developed to improve patient therapy through the identification of targets and surrogate molecular signatures that can help direct appropriate treatment regimens for efficacy and drug safety. This is particularly the case in oncology whereby patient tumor and biofluids are routinely isolated and analyzed for genetic, immunohistochemical, and/or soluble markers to determine if a predictive biomarker signature (i.e., mutated gene product, differentially expressed protein, altered cell surface antigen, etc.) exists as a means for selecting optimal treatment. These biomarkers may be drug-specific targets and/or differentially expressed nucleic acids, proteins, or cell lineage profiles that can directly affect the patient's disease tissue or immune response to a therapeutic regimen. Improvements in diagnostics that can prescreen predictive response biomarker profiles will continue to optimize the ability to enhance patient therapy via molecularly defined disease-specific treatment. Conversely, patients lacking predictive response biomarkers will no longer needlessly be exposed to drugs that are unlikely to provide clinical benefit, thereby enabling patients to pursue other therapeutic options and lowering overall healthcare costs by avoiding futile treatment. While patient molecular profiling offers a powerful tool to direct treatment options, the difficulty in identifying disease-specific targets or predictive biomarker signatures that stratify a significant fraction within a disease indication remains challenging. A goal for drug developers is to identify and implement new strategies that can rapidly enable the development of beneficial disease-specific therapies for broad patient-specific targeting without the need of tedious predictive biomarker discovery and validation efforts, currently a bottleneck for development timelines. Successful strategies may gain an advantage by employing repurposed, less-expensive existing agents while potentially improving the therapeutic activity of novel, target-specific therapies that may otherwise have off-target toxicities or less efficacy in cells exhibiting certain pathways. Here, we discuss the use of co-developing diagnostic-targeting vectors to identify patients whose malignant tissue can specifically uptake a targeted anti-cancer drug vector prior to treatment. Using this system, a patient can be predetermined in real-time as to whether or not their tumor(s) can specifically uptake a drug-linked diagnostic vector, thus inferring the uptake of a similar vector linked to an anti-cancer agent. If tumor-specific uptake is observed, then the patient may be suitable for drug-linked vector therapy and have a higher likelihood of clinical benefit while patients with no tumor uptake should consider other therapeutic options. This approach offers complementary opportunities to rapidly develop broad tumor-specific agents for use in personalized medicine.


Isolation of Circulating Tumor Cells from Multiple Epithelial Cancers with ApoStream(®) for Detecting (or Monitoring) the Expression of Folate Receptor Alpha.

  • Daniel J O'Shannessy‎ et al.
  • Biomarker insights‎
  • 2016‎

This study describes our efforts to further the field of noninvasive diagnostics, specifically in the area of liquid biopsies in oncology. We employed laser scanning cytometry using highly selective antibodies to interrogate circulating tumor cells (CTCs) that were isolated using ApoStream(®) technology to identify folate receptor alpha (FRα)-positive cells. We demonstrate that FRα(+) CTCs can be isolated from patients with metastatic cancers, including NSCLC adenocarcinoma, breast cancer, and ovarian cancer, whereas squamous cell lung cancer and normal healthy controls were devoid of FRα(+) CTCs. We believe that the developed methodology will have applications in both the diagnosis and the monitoring of FRα-expressing cancers. Folate receptor alpha (FRα) expression may have utility as a potential diagnostic and therapeutic target in solid tumors. As tissue samples are not always available for patient screening, this study evaluated a noninvasive assay in CTCs from blood samples to detect FRα expression. The presence of FRα(+) CTCs enriched using ApoStream(®) and detected using laser capture cytometry was evaluated in blood samples from cancer patients [NSCLC adenocarcinoma (n = 14), breast cancer (n = 20), ovarian cancer (n = 6), and squamous lung cancer patients (n = 6)] and healthy subjects (n = 20). The data demonstrated that FRα(+) CTCs were detected in blood from NSCLC adenocarcinoma, breast, and ovarian cancer patients, whereas squamous cell lung cancer patients and normal healthy controls lacked FRα(+) CTCs as previously known. We demonstrate that CTCs captured using ApoStream(®) can be used to detect FRα(+) CTCs and may have clinical utility as a real-time liquid biopsy for assessing FRα levels in cancer patients.


Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature.

  • Katherine Rybinski‎ et al.
  • Oncotarget‎
  • 2015‎

Over-expression of endosialin/CD248 (herein referred to as CD248) has been associated with increased tumor microvasculature in various tissue origins which makes it an attractive anti-angiogenic target. In an effort to target CD248, we have generated a human CD248 knock-in mouse line and MORAb-004, the humanized version of the mouse anti-human CD248 antibody Fb5. Here, we report that MORAb-004 treatment significantly impacted syngeneic tumor growth and tumor metastasis in the human CD248 knock-in mice. In comparison with untreated tumors, MORAb-004 treated tumors displayed overall shortened and distorted blood vessels. Immunofluorescent staining of tumor sections revealed drastically more small and dysfunctional vessels in the treated tumors. The CD248 levels on cell surfaces of neovasculature pericytes were significantly reduced due to its internalization. This reduction of CD248 was also accompanied by reduced α-SMA expression, depolarization of pericytes and endothelium, and ultimately dysfunctional microvessels. These results suggest that MORAb-004 reduced CD248 on pericytes, impaired tumor microvasculature maturation and ultimately suppressed tumor development.


GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis.

  • Su-Jin Kim‎ et al.
  • PloS one‎
  • 2012‎

Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that potentiates glucose-stimulated insulin secretion during a meal. Since GIP has also been shown to exert β-cell prosurvival and adipocyte lipogenic effects in rodents, both GIP receptor agonists and antagonists have been considered as potential therapeutics in type 2 diabetes (T2DM). In the present study, we tested the hypothesis that chronically elevating GIP levels in a transgenic (Tg) mouse model would increase adipose tissue expansion and exert beneficial effects on glucose homeostasis. In contrast, although GIP Tg mice demonstrated enhanced β-cell function, resulting in improved glucose tolerance and insulin sensitivity, they exhibited reduced diet-induced obesity. Adipose tissue macrophage infiltration and hepatic steatosis were both greatly reduced, and a number of genes involved in lipid metabolism/inflammatory signaling pathways were found to be down-regulated. Reduced adiposity in GIP Tg mice was associated with decreased energy intake, involving overexpression of hypothalamic GIP. Together, these studies suggest that, in the context of over-nutrition, transgenic GIP overexpression has the potential to improve hepatic and adipocyte function as well as glucose homeostasis.


Antibody-drug conjugate MORAb-202 exhibits long-lasting antitumor efficacy in TNBC PDx models.

  • Keiji Furuuchi‎ et al.
  • Cancer science‎
  • 2021‎

The antibody-drug conjugate (ADC) MORAb-202, consisting of farletuzumab paired with a cathepsin B-cleavable linker and eribulin, targets folate receptor alpha (FRA), which is frequently overexpressed in various tumor types. MORAb-202 was highly cytotoxic to FRA-positive cells in vitro, with limited off-target killing of FRA-negative cells. Furthermore, MORAb-202 showed a clear in vitro bystander cytotoxic effect in coculture with FRA-positive/negative cells. In vivo antitumor efficacy studies of MORAb-202 were conducted with a single administration of MORAb-202 in triple-negative breast cancer (TNBC) patient-derived xenograft (PDx) models expressing low and high levels of FRA. MORAb-202 exhibited durable efficacy proportional to tumor FRA expression. Toxicology studies (Q3Wx2) in nonhuman primates suggested that the major observed toxicity of MORAb-202 is hematologic toxicity. Overall, these findings support the concept that MORAb-202 represents a promising investigational ADC for the treatment of TNBC patients.


Novel antibody probes for the characterization of endosialin/TEM-1.

  • Daniel J O'Shannessy‎ et al.
  • Oncotarget‎
  • 2016‎

Endosialin (Tumor Endothelial Marker-1 (TEM-1), CD248) is primarily expressed on pericytes of tumor-associated microvasculature, tumor-associated stromal cells and directly on tumors of mesenchymal origin, including sarcoma and melanoma. While the function of endosialin/TEM-1 is incompletely understood, studies have suggested a role in supporting tumor growth and invasion thus making it an attractive therapeutic target. In an effort to further understand its role in cancer, we previously developed a humanized anti-endosialin/TEM-1 monoclonal antibody (mAb), called ontuxizumab (MORAb-004) for testing in preclinical and clinical studies. We herein report on the generation of an extensive panel of recombinant endosialin/TEM-1 protein extracellular domain (ECD) fragments and novel mAbs against ECD motifs. The domain-specific epitopes were mapped against ECD sub-domains to identify those that can detect distinct structural motifs and can be potentially formatted as probes suitable for diagnostic and functional studies. A number of mAbS were shown to cross-react with the murine and human protein, potentially allowing their use in human animal models and corresponding clinical trials. In addition, pairing of several mAbs supported their use in immunoassays that can detect soluble endosialin/TEM-1 (sEND) in the serum of healthy subjects and cancer patients.


Altered pancreatic growth and insulin secretion in WSB/EiJ mice.

  • Maggie M Ho‎ et al.
  • PloS one‎
  • 2014‎

These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies also highlight the role of post-natal growth in determining adult β-cell mass. Mice are important animal models for the study of metabolic physiology and the genetics of complex traits. Wild-derived inbred mouse strains, such as WSB/EiJ (WSB), are unrelated to the commonly studied mouse strains and are valuable tools to identify novel genes that modify disease risk. We have previously shown that in contrast to C57BL/6J (B6) mice, WSB mice fed a high fat diet do not develop hyperinsulinemia or insulin resistance, and had nearly undetectable insulin secretion in response to an intraperitoneal glucose challenge. As hyperinsulinemia may drive obesity and insulin resistance, we examined whether defects in β-cell mass or function could contribute to the low insulin levels in WSB mice. In young WSB mice, β-cell mass was similar to B6 mice. However, we found that adult WSB mice had reduced β-cell mass due to reduced pancreatic weights. Pancreatic sizes were similar between the strains when normalized to body weight, suggesting their pancreatic size is appropriate to their body size in adults, but overall post-natal pancreatic growth was reduced in WSB mice compared to B6 mice. Islet architecture was normal in WSB mice. WSB mice had markedly increased insulin secretion from isolated islets in vitro. These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies suggest that WSB mice may provide novel insight into mechanisms regulating insulin secretion and also highlight the role of post-natal growth in determining adult β-cell mass.


Generation and characterization of high affinity human monoclonal antibodies that neutralize staphylococcal enterotoxin B.

  • Brian Drozdowski‎ et al.
  • Journal of immune based therapies and vaccines‎
  • 2010‎

Staphylococcal enterotoxins are considered potential biowarfare agents that can be spread through ingestion or inhalation. Staphylococcal enterotoxin B (SEB) is a widely studied superantigen that can directly stimulate T-cells to release a massive amount of proinflammatory cytokines by bridging the MHC II molecules on an antigen presenting cell (APC) and the Vβ chains of the T-cell receptor (TCR). This potentially can lead to toxic, debilitating and lethal effects. Currently, there are no preventative measures for SEB exposure, only supportive therapies.


Gene expression analyses support fallopian tube epithelium as the cell of origin of epithelial ovarian cancer.

  • Daniel J O'Shannessy‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

Folate receptor alpha (FOLR1/FRA) is reported to be overexpressed in epithelial ovarian cancers (EOC), especially the serous histotype. Further, while dysregulation of the folate-dependent 1-carbon cycle has been implicated in tumorogenesis, little is known relative to the potential mechanism of action of FOLR1 expression in these processes. We therefore investigated the expression of FOLR1, other folate receptors, and genes within the 1-carbon cycle in samples of EOC, normal ovary and fallopian tube on a custom TaqMan Low Density Array. Also included on this array were known markers of EOC such as MSLN, MUC16 and HE4. While few differences were observed in the expression profiles of genes in the 1-carbon cycle, genes previously considered to be overexpressed in EOC (e.g., FOLR1, MSLN, MUC16 and HE4) showed significantly increased expression when comparing EOC to normal ovary. However, when the comparator was changed to normal fallopian tube, these differences were abolished, supporting the hypothesis that EOC derives from fallopian fimbriae and, further, that markers previously considered to be upregulated or overexpressed in EOC are most likely not of ovarian origin, but fallopian in derivation. Our findings therefore support the hypothesis that the cell of origin of EOC is tubal epithelium.


Metabolic effects of leptin receptor knockdown or reconstitution in adipose tissues.

  • Sandra Pereira‎ et al.
  • Scientific reports‎
  • 2019‎

The relative contribution of peripheral and central leptin signalling to the regulation of metabolism and the mechanisms through which leptin affects glucose homeostasis have not been fully elucidated. We generated complementary lines of mice with either leptin receptor (Lepr) knockdown or reconstitution in adipose tissues using Cre-lox methodology. Lepr knockdown mice were modestly lighter and had lower plasma insulin concentrations following an oral glucose challenge compared to controls, despite similar insulin sensitivity. We rendered male mice diabetic using streptozotocin (STZ) and found that upon prolonged leptin therapy, Lepr knockdown mice had an accelerated decrease in blood glucose compared to controls that was associated with higher plasma concentrations of leptin and leptin receptor. Mice with transcriptional blockade of Lepr (LeprloxTB/loxTB) were obese and hyperglycemic and reconstitution of Lepr in adipose tissues of LeprloxTB/loxTB mice resulted in males reaching a higher maximal body weight. Although mice with adipose tissue Lepr reconstitution had lower blood glucose levels at several ages, their plasma insulin concentrations during an oral glucose test were elevated. Thus, attenuation or restoration of Lepr in adipocytes alters the plasma insulin profile following glucose ingestion, modifies the glucose-lowering effect of prolonged leptin therapy in insulin-deficient diabetes, and may modulate weight gain.


Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids.

  • Gwenaël Labouèbe‎ et al.
  • Nature neuroscience‎
  • 2013‎

The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues.


Tumor antigen CA125 suppresses antibody-dependent cellular cytotoxicity (ADCC) via direct antibody binding and suppressed Fc-γ receptor engagement.

  • James Bradford Kline‎ et al.
  • Oncotarget‎
  • 2017‎

Cancers employ a number of mechanisms to evade host immune responses. Here we report the effects of tumor-shed antigen CA125/MUC16 on suppressing IgG1-mediated antibody-dependent cellular cytotoxicity (ADCC). This evidence stems from prespecified subgroup analysis of a Phase 3 clinical trial testing farletuzumab, a monoclonal antibody to folate receptor alpha, plus standard-of-care carboplatin-taxane chemotherapy in patients with recurrent platinum-sensitive ovarian cancer. Patients with low serum CA125 levels treated with farletuzumab demonstrated improvements in progression free survival (HR 0.49, p = 0.0028) and overall survival (HR 0.44, p = 0.0108) as compared to placebo. Farletuzumab's pharmacologic activity is mediated in part through ADCC. Here we show that CA125 inhibits ADCC by directly binding to farletuzumab that in turn perturbs Fc-γ receptor engagement on effector cells.


Folate receptor-α (FOLR1) expression and function in triple negative tumors.

  • Brian M Necela‎ et al.
  • PloS one‎
  • 2015‎

Folate receptor alpha (FOLR1) has been identified as a potential prognostic and therapeutic target in a number of cancers. A correlation has been shown between intense overexpression of FOLR1 in breast tumors and poor prognosis, yet there is limited examination of the distribution of FOLR1 across clinically relevant breast cancer subtypes. To explore this further, we used RNA-seq data from multiple patient cohorts to analyze the distribution of FOLR1 mRNA across breast cancer subtypes comprised of estrogen receptor positive (ER+), human epidermal growth factor receptor positive (HER2+), and triple negative (TNBC) tumors. FOLR1 expression varied within breast tumor subtypes; triple negative/basal tumors were significantly associated with increased expression of FOLR1 mRNA, compared to ER+ and HER2+ tumors. However, subsets of high level FOLR1 expressing tumors were observed in all clinical subtypes. These observations were supported by immunohistochemical analysis of tissue microarrays, with the largest number of 3+ positive tumors and highest H-scores of any subtype represented by triple negatives, and lowest by ER+ tumors. FOLR1 expression did not correlate to common clinicopathological parameters such as tumor stage and nodal status. To delineate the importance of FOLR1 overexpression in triple negative cancers, RNA-interference was used to deplete FOLR1 in overexpressing triple negative cell breast lines. Loss of FOLR1 resulted in growth inhibition, whereas FOLR1 overexpression promoted folate uptake and growth advantage in low folate conditions. Taken together, our data suggests patients with triple negative cancers expressing high FOLR1 expression represent an important population of patients that may benefit from targeted anti-FOLR1 therapy. This may prove particularly helpful for a large number of patients who would typically be classified as triple negative and who to this point have been left without any targeted treatment options.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: