Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Breakdown of supersaturation barrier links protein folding to amyloid formation.

  • Masahiro Noji‎ et al.
  • Communications biology‎
  • 2021‎

The thermodynamic hypothesis of protein folding, known as the "Anfinsen's dogma" states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen's dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer's and Parkinson's diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen's intramolecular folding universe and the intermolecular misfolding universe.


Gene Transfer in Rodent Nervous Tissue Following Hindlimb Intramuscular Delivery of Recombinant Adeno-Associated Virus Serotypes AAV2/6, AAV2/8, and AAV2/9.

  • Asad Jan‎ et al.
  • Neuroscience insights‎
  • 2019‎

Recombinant adeno-associated virus (rAAV) vectors have emerged as the safe vehicles of choice for long-term gene transfer in mammalian nervous system. Recombinant adeno-associated virus-mediated localized gene transfer in adult nervous system following direct inoculation, that is, intracerebral or intrathecal, is well documented. However, recombinant adeno-associated virus delivery in defined neuronal populations in adult animals using less-invasive methods as well as avoiding ectopic gene expression following systemic inoculation remain challenging. Harnessing the capability of some recombinant adeno-associated virus serotypes for retrograde transduction may potentially address such limitations (Note: The term retrograde transduction in this manuscript refers to the uptake of injected recombinant adeno-associated virus particles at nerve terminals, retrograde transport, and subsequent transduction of nerve cell soma). In some studies, recombinant adeno-associated virus serotypes 2/6, 2/8, and 2/9 have been shown to exhibit transduction of connected neuroanatomical tracts in adult animals following lower limb intramuscular recombinant adeno-associated virus delivery in a pattern suggestive of retrograde transduction. However, an extensive side-by-side comparison of these serotypes following intramuscular delivery regarding tissue viral load, and the effect of promoter on transgene expression, has not been performed. Hence, we delivered recombinant adeno-associated virus serotypes 2/6, 2/8, or 2/9 encoding enhanced green fluorescent protein (eGFP), under the control of either cytomegalovirus (CMV) or human synapsin (hSyn) promoter, via a single unilateral hindlimb intramuscular injection in the bicep femoris of adult C57BL/6J mice. Four weeks post injection, we quantified viral load and transgene (enhanced green fluorescent protein) expression in muscle and related nervous tissues. Our data show that the select recombinant adeno-associated virus serotypes transduce sciatic nerve and groups of neurons in the dorsal root ganglia on the injected side, indicating that the intramuscular recombinant adeno-associated virus delivery is useful for achieving gene transfer in local neuroanatomical tracts. We also observed sparse recombinant adeno-associated virus viral delivery or eGFP transduction in lumbar spinal cord and a noticeable lack thereof in brain. Therefore, further improvements in recombinant adeno-associated virus design are warranted to achieve efficient widespread retrograde transduction following intramuscular and possibly other peripheral routes of delivery.


Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity.

  • Asad Jan‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.


In-Silico Evidence for a Two Receptor Based Strategy of SARS-CoV-2.

  • Edoardo Milanetti‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

We propose a computational investigation on the interaction mechanisms between SARS-CoV-2 spike protein and possible human cell receptors. In particular, we make use of our newly developed numerical method able to determine efficiently and effectively the relationship of complementarity between portions of protein surfaces. This innovative and general procedure, based on the representation of the molecular isoelectronic density surface in terms of 2D Zernike polynomials, allows the rapid and quantitative assessment of the geometrical shape complementarity between interacting proteins, which was unfeasible with previous methods. Our results indicate that SARS-CoV-2 uses a dual strategy: in addition to the known interaction with angiotensin-converting enzyme 2, the viral spike protein can also interact with sialic-acid receptors of the cells in the upper airways.


Folding Steps in the Fibrillation of Functional Amyloid: Denaturant Sensitivity Reveals Common Features in Nucleation and Elongation.

  • Thorbjørn V Sønderby‎ et al.
  • Journal of molecular biology‎
  • 2022‎

Functional bacterial amyloids (FuBA) are intrinsically disordered proteins (IDPs) which rapidly and efficiently aggregate, forming extremely stable fibrils. The conversion from IDP to amyloid is evolutionarily optimized and likely couples folding to association. Many FuBA contain several imperfect repeat sequences which contribute to the stability of mature FuBA fibrils. Aggregation can be considered an intermolecular extension of the process of intramolecular protein folding which has traditionally been studied using chemical denaturants. Here we employ denaturants to investigate folding steps during fibrillation of CsgA and FapC. We quantify protein compactification (i.e. the extent of burial of otherwise exposed surface area upon association of proteins) during different stages of fibrillation based on the dependence of fibrillation rate constants on the denaturant concentration (m-values) determined from fibrillation curves. For both proteins, urea mainly affects nucleation and elongation (not fragmentation), consistent with the fact that these steps involve both intra- and intermolecular association. The two steps have similar m-values, indicating that activation steps in nucleation and elongation involve the same level of folding. Surprisingly, deletion of two or three repeats from FapC leads to larger m-values (i.e. higher compactification) during the activation step of fibril growth. This observation is extended by SAXS analysis of the fibrils which indicates that weakening of the amyloidogenic core caused by repeat deletions causes a larger portion of normally unstructured regions of the protein to be included into the amyloid backbone. We conclude that the sensitivity of fibrillation to denaturants can provide useful insight into molecular mechanisms of aggregation.


Cys-labeling kinetics of membrane protein GlpG: a role for specific SDS binding and micelle changes?

  • Daniel E Otzen‎ et al.
  • Biophysical journal‎
  • 2021‎

Empirically, α-helical membrane protein folding stability in surfactant micelles can be tuned by varying the mole fraction MFSDS of anionic (sodium dodecyl sulfate (SDS)) relative to nonionic (e.g., dodecyl maltoside (DDM)) surfactant, but we lack a satisfying physical explanation of this phenomenon. Cysteine labeling (CL) has thus far only been used to study the topology of membrane proteins, not their stability or folding behavior. Here, we use CL to investigate membrane protein folding in mixed DDM-SDS micelles. Labeling kinetics of the intramembrane protease GlpG are consistent with simple two-state unfolding-and-exchange rates for seven single-Cys GlpG variants over most of the explored MFSDS range, along with exchange from the native state at low MFSDS (which inconveniently precludes measurement of unfolding kinetics under native conditions). However, for two mutants, labeling rates decline with MFSDS at 0-0.2 MFSDS (i.e., native conditions). Thus, an increase in MFSDS seems to be a protective factor for these two positions, but not for the five others. We propose different scenarios to explain this and find the most plausible ones to involve preferential binding of SDS monomers to the site of CL (based on computational simulations) along with changes in size and shape of the mixed micelle with changing MFSDS (based on SAXS studies). These nonlinear impacts on protein stability highlights a multifaceted role for SDS in membrane protein denaturation, involving both direct interactions of monomeric SDS and changes in micelle size and shape along with the general effects on protein stability of changes in micelle composition.


Changes in CD163+, CD11b+, and CCR2+ peripheral monocytes relate to Parkinson's disease and cognition.

  • Sara Konstantin Nissen‎ et al.
  • Brain, behavior, and immunity‎
  • 2022‎

Alpha-synuclein pathology is associated with immune activation and neurodegeneration in Parkinson's disease. The immune activation involves not only microglia but also peripheral immune cells, such as mononuclear phagocytes found in blood and infiltrated in the brain. Understanding peripheral immune involvement is essential for developing immunomodulatory treatment. Therefore, we aimed to study circulating mononuclear phagocytes in early- and late-stage Parkinson's disease, defined by disease duration of less or more than five years, respectively, and analyze their association with clinical phenotypes. We performed a cross-sectional multi-color flow cytometry study on 78 sex-balanced individuals with sporadic Parkinson's disease, 28 controls, and longitudinal samples from seven patients and one control. Cell frequencies and surface marker expressions on natural killer cells, monocyte subtypes, and dendritic cells were compared between groups and correlated with standardized clinical scores. We found elevated frequencies and surface levels of migration- (CCR2, CD11b) and phagocytic- (CD163) markers, particularly on classical and intermediate monocytes in early Parkinson's disease. HLA-DR expression was increased in advanced stages of the disease, whereas TLR4 expression was decreased in women with Parkinson's Disease. The disease-associated immune changes of CCR2 and CD11b correlated with worse cognition. Increased TLR2 expression was related to worse motor symptoms. In conclusion, our data highlights the TLR2 relevance in the symptomatic motor presentation of the disease and a role for peripheral CD163+ and migration-competent monocytes in Parkinson's disease cognitive defects. Our study suggests that the peripheral immune system is dynamically altered in Parkinson's disease stages and directly related to both symptoms and the sex bias of the disease.


A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces.

  • Ferdinand X Choong‎ et al.
  • Biofilm‎
  • 2021‎

Biofilms enable bacteria to colonize numerous ecological niches. Bacteria within a biofilm are protected by the extracellular matrix (ECM), of which the fibril-forming amyloid protein curli and polysaccharide cellulose are major components in members of Salmonella, Eschericha and Mycobacterium genus. A shortage of real-time detection methods has limited our understanding of how ECM production contributes to biofilm formation and pathogenicity. Here we present optotracing as a new semi-high throughput method for dynamic monitoring of Salmonella biofilm growth on air-solid interfaces. We show how an optotracer with binding-induced fluorescence acts as a dynamic fluorescent reporter of curli expression during biofilm formation on agar. Using spectrophotometry and microscopic imaging of fluorescence, we analyse in real-time the development of the curli architecture in relation to bacterial cells. With exceptional spatial and temporal precision, this revealed a well-structured, non-uniform distribution of curli organised in distally projecting radial channel patterns. Dynamic monitoring of the biofilm also showed defined regions undergoing different growth phases. ECM structures were found to assemble in regions of late exponential growth phase, suggesting that ECM forms on site after bacteria colonize the surface. As the optotracer biofilm method expedites screening of curli production, providing exceptional spatial-temporal understanding of the surface-associated biofilm lifestyle, this method adds a new technique to further our understanding of bacterial biofilms.


Increased maternofoetal transfer of antibodies in a murine model of systemic lupus erythematosus, but no immune activation and neuroimmune sequelae in offspring.

  • Sofie Vestergaard Fonager‎ et al.
  • Journal of neuroimmunology‎
  • 2022‎

Maternally transferred autoantibodies can negatively impact the development and health of offspring, increasing the risk of neurodevelopmental disorders. We used embryo transfers to examine maternofoetal immune imprinting in the autoimmune BXSB/MpJ mouse model. Anti-double-stranded DNA antibodies and total immunoglobulins were measured, using allotypes of the IgG subclass to distinguish maternally transferred antibodies from those produced endogenously. Frequencies of germinal center and plasma cells were analysed by flow cytometry. Microglial morphology in offspring CNS was assessed using immunohistochemistry. In contrast to prior findings, our results indicate that BXSB/MpJ mothers display a mild autoimmune phenotype, which does not significantly impact the offspring.


Alzheimer's Progenitor Amyloid-β Targets and Dissolves Microbial Amyloids and Impairs Biofilm Function.

  • Syed Aoun Ali‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Alzheimer's disease (AD) is a leading form of dementia where the presence of extra-neuronal plaques of Amyloid-β (Aβ) is a pathological hallmark. However, Aβ peptide is also observed in the intestinal tissues of AD patients and animal models. In this study, it is reported that Aβ monomers can target and disintegrate microbial amyloids of FapC and CsgA formed by opportunistic gut pathogens, Pseudomonas aeruginosa and Escherichia coli, explaining a potential role of Aβ in the gut-brain axis. Employing a zebrafish-based transparent in vivo system and whole-mount live-imaging, Aβ is observed to diffuse into the vasculature and subsequently localize with FapC or CsgA fibrils that were injected into the tail muscles of the fish. FapC aggregates, produced after Aβ treatment (Faβ), present selective toxicity to SH-SY5Y neuronal cells while the intestinal Caco-2 cells are shown to phagocytose Faβ in a non-toxic cellular process. After remodeling by Aβ, microbial fibrils lose their native function of cell adhesion with intestinal Caco-2 cells and Aβ dissolves and detaches the microbial fibrils already attached to the cell membrane. Taken together, this study strongly indicates an anti-biofilm role for Aβ monomers that can help aid in the future development of selective anti-Alzheimer's and anti-infective medicine.


Sex-dimorphic neuroprotective effect of CD163 in an α-synuclein mouse model of Parkinson's disease.

  • Sara A Ferreira‎ et al.
  • NPJ Parkinson's disease‎
  • 2023‎

Alpha-synuclein (α-syn) aggregation and immune activation represent hallmark pathological events in Parkinson's disease (PD). The PD-associated immune response encompasses both brain and peripheral immune cells, although little is known about the immune proteins relevant for such a response. We propose that the upregulation of CD163 observed in blood monocytes and in the responsive microglia in PD patients is a protective mechanism in the disease. To investigate this, we used the PD model based on intrastriatal injections of murine α-syn pre-formed fibrils in CD163 knockout (KO) mice and wild-type littermates. CD163KO females revealed an impaired and differential early immune response to α-syn pathology as revealed by immunohistochemical and transcriptomic analysis. After 6 months, CD163KO females showed an exacerbated immune response and α-syn pathology, which ultimately led to dopaminergic neurodegeneration of greater magnitude. These findings support a sex-dimorphic neuroprotective role for CD163 during α-syn-induced neurodegeneration.


Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore.

  • Marianne Skals‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

ATP is as an extracellular signaling molecule able to amplify the cell lysis inflicted by certain bacterial toxins including the two RTX toxins α-hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans. Inhibition of P2X receptors completely blocks the RTX toxin-induced hemolysis over a larger concentration range. It is, however, at present not known how the ATP that provides the amplification is released from the attacked cells. Here we show that both HlyA and LtxA trigger acute release of ATP from human erythrocytes that preceded and were not caused by cell lysis. This early ATP release did not occur via previously described ATP-release pathways in the erythrocyte. Both HlyA and LtxA were capable of triggering ATP release in the presence of the pannexin 1 blockers carbenoxolone and probenecid, and the HlyA-induced ATP release was found to be similar in erythrocytes from pannexin 1 wild type and knock-out mice. Moreover, the voltage-dependent anion channel antagonist TRO19622 had no effect on ATP release by either of the toxins. Finally, we showed that both HlyA and LtxA were able to release ATP from ATP-loaded lipid (1-palmitoyl-2-oleoyl-phosphatidylcholine) vesicles devoid of any erythrocyte channels or transporters. Again we were able to show that this happened in a non-lytic fashion, using calcein-containing vesicles as controls. These data show that both toxins incorporate into lipid vesicles and allow ATP to be released. We suggest that both toxins cause acute ATP release by letting ATP pass the toxin pores in both human erythrocytes and artificial membranes.


The transcriptional regulator GalR self-assembles to form highly regular tubular structures.

  • Emil D Agerschou‎ et al.
  • Scientific reports‎
  • 2016‎

The Gal repressor regulates transport and metabolism of D-galactose in Escherichia coli and can mediate DNA loop formation by forming a bridge between adjacent or distant sites. GalR forms insoluble aggregates at lower salt concentrations in vitro, which can be solubilized at higher salt concentrations. Here, we investigate the assembly and disassembly of GalR aggregates. We find that a sharp transition from aggregates to soluble species occurs between 200 and 400 mM NaCl, incompatible with a simple salting-in effect. The aggregates are highly ordered rod-like structures, highlighting a remarkable ability for organized self-assembly. Mutant studies reveal that aggregation is dependent on two separate interfaces of GalR. The highly ordered structures dissociate to smaller aggregates in the presence of D-galactose. We propose that these self-assembled structures may constitute galactose-tolerant polymers for chromosome compaction in stationary phase cells, in effect linking self-assembly with regulatory function.


Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness.

  • Guanghong Zeng‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness.


Early synaptic dysfunction induced by α-synuclein in a rat model of Parkinson's disease.

  • Jenny-Ann Phan‎ et al.
  • Scientific reports‎
  • 2017‎

Evidence suggests that synapses are affected first in Parkinson's disease (PD). Here, we tested the claim that pathological accumulation of α-synuclein, and subsequent synaptic disruption, occur in absence of dopaminergic neuron loss in PD. We determined early synaptic changes in rats that overexpress human α-synuclein by local injection of viral-vectors in midbrain. We aimed to achieve α-synuclein levels sufficient to induce terminal pathology without significant loss of nigral neurons. We tested synaptic disruption in vivo by analyzing motor defects and binding of a positron emission tomography (PET) radioligand to the vesicular monoamine transporter 2, (VMAT2), [11C]dihydrotetrabenazine (DTBZ). Animals overexpressing α-synuclein had progressive motor impairment and, 12 weeks post-surgery, showed asymmetric in vivo striatal DTBZ binding. The PET images matched ligand binding in post-mortem tissue, and histological markers of dopaminergic integrity. Histology confirmed the absence of nigral cell death with concomitant significant loss of striatal terminals. Progressive aggregation of proteinase-K resistant and Ser129-phosphorylated α-synuclein was observed in dopaminergic terminals, in dystrophic swellings that resembled axonal spheroids and contained mitochondria and vesicular proteins. In conclusion, pathological α-synuclein in nigro-striatal axonal terminals leads to early axonal pathology, synaptic disruption, dysfunction of dopaminergic neurotransmission, motor impairment, and measurable change of VMAT2 in the absence of cell loss.


Polo-like kinase 2 modulates α-synuclein protein levels by regulating its mRNA production.

  • Rikke H Kofoed‎ et al.
  • Neurobiology of disease‎
  • 2017‎

Variations in the α-synuclein-encoding SNCA gene represent the greatest genetic risk factor for Parkinson's disease (PD), and duplications/triplications of SNCA cause autosomal dominant familial PD. These facts closely link brain levels of α-synuclein with the risk of PD, and make lowering α-synuclein levels a therapeutic strategy for the treatment of PD and related synucleinopathies. In this paper, we corroborate previous findings on the ability of overexpressed Polo-like kinase 2 (PLK-2) to decrease cellular α-synuclein, but demonstrate that the process is independent of PLK-2 phosphorylating S129 in α-synuclein because a similar reduction is achieved with the non-phosphorable S129A mutant α-synuclein. Using a specific PLK-2 inhibitor (compound 37), we demonstrate that endogenous PLK-2 phosphorylates S129 only in some cells, but increases α-synuclein protein levels in all tested cell cultures and brain slices. PLK-2 is found to regulate the transcription of α-synuclein mRNA from both the endogenous mouse SNCA gene and transgenic vectors that only contain the open reading frame. Moreover, we are the first to show that regulation of α-synuclein by PLK-2 is of physiological importance since 10days' inhibition of endogenous PLK-2 in wt C57BL/6 mice increases endogenous α-synuclein protein levels. Our findings collectively demonstrate that PLK-2 regulates α-synuclein levels by a previously undescribed transcription-based mechanism. This mechanism is active in cells and brain tissue, opening up for alternative strategies for modulating α-synuclein levels and thereby for the possibility of modifying disease progression in synucleinopaties.


Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson's disease.

  • Vanesa Sanchez-Guajardo‎ et al.
  • PloS one‎
  • 2010‎

Post-mortem analysis of brains from Parkinson's disease (PD) patients strongly supports microglia activation and adaptive immunity as factors contributing to disease progression. Such responses may be triggered by alpha-synuclein (alpha-syn), which is known to be the main constituent of the aggregated proteins found in Lewy bodies in the brains of PD patients. To investigate this we used a recombinant viral vector to express human alpha-syn in rat midbrain at levels that induced neuronal pathology either in the absence or the presence of dopaminergic cell death, thereby mimicking early or late stages of the disease. Microglia activation was assessed by stereological quantification of Mac1+ cells, as well as the expression patterns of CD68 and MCH II. In our study, when alpha-syn induced neuronal pathology but not cell death, a fast transient increase in microglia cell numbers resulted in the long-term induction of MHC II+ microglia, denoting antigen-presenting ability. On the other hand, when alpha-syn induced both neuronal pathology and cell death, there was a delayed increase in microglia cell numbers, which correlated with long-lasting CD68 expression and a morphology reminiscent of peripheral macrophages. In addition T-lymphocyte infiltration, as judged by the presence of CD4+ and CD8+ cells, showed distinct kinetics depending on the degree of neurodegeneration, and was significantly higher when cell death occurred. We have thus for the first time shown that the microglial response differs depending on whether alpha-syn expression results on cell death or not, suggesting that microglia may play different roles during disease progression. Furthermore, our data suggest that the microglial response is modulated by early events related to alpha-syn expression in substantia nigra and persists at the long term.


α-Synuclein pathology in Parkinson disease activates homeostatic NRF2 anti-oxidant response.

  • Alberto Delaidelli‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as 'the master regulator of cellular anti-oxidant response', both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.


Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus.

  • Zahra Najarzadeh‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Phenol-soluble modulins (PSMs), such as α-PSMs, β-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits β-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than β-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.


PET imaging reveals early and progressive dopaminergic deficits after intra-striatal injection of preformed alpha-synuclein fibrils in rats.

  • Majken B Thomsen‎ et al.
  • Neurobiology of disease‎
  • 2021‎

Alpha-synuclein (a-syn) can aggregate and form toxic oligomers and insoluble fibrils which are the main component of Lewy bodies. Intra-neuronal Lewy bodies are a major pathological characteristic of Parkinson's disease (PD). These fibrillar structures can act as seeds and accelerate the aggregation of monomeric a-syn. Indeed, recent studies show that injection of preformed a-syn fibrils (PFF) into the rodent brain can induce aggregation of the endogenous monomeric a-syn resulting in neuronal dysfunction and eventual cell death. We injected 8 μg of murine a-syn PFF, or soluble monomeric a-syn into the right striatum of rats. The animals were monitored behaviourally using the cylinder test, which measures paw asymmetry, and the corridor task that measures lateralized sensorimotor response to sugar treats. In vivo PET imaging was performed after 6, 13 and 22 weeks using [11C]DTBZ, a marker of the vesicular monoamine 2 transporter (VMAT2), and after 15 and 22 weeks using [11C]UCB-J, a marker of synaptic SV2A protein in nerve terminals. Histology was performed at the three time points using antibodies against dopaminergic markers, aggregated a-syn, and MHCII to evaluate the immune response. While the a-syn PFF injection caused only mild behavioural changes, [11C]DTBZ PET showed a significant and progressive decrease of VMAT2 binding in the ipsilateral striatum. This was accompanied by a small progressive decrease in [11C]UCB-J binding in the same area. In addition, our histological analysis revealed a gradual spread of misfolded a-syn pathology in areas anatomically connected to striatum that became bilateral with time. The striatal a-syn PFF injection resulted in a progressive unilateral degeneration of dopamine terminals, and an early and sustained presence of MHCII positive ramified microglia in the ipsilateral striatum and substantia nigra. Our study shows that striatal injections of a-syn fibrils induce progressive pathological synaptic dysfunction prior to cell death that can be detected in vivo with PET. We confirm that intrastriatal injection of a-syn PFFs provides a model of progressive a-syn pathology with loss of dopaminergic and synaptic function accompanied by neuroinflammation, as found in human PD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: