Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides.

  • Beatriz Trastoy‎ et al.
  • Nature communications‎
  • 2020‎

The human gut microbiota plays a central role not only in regulating the metabolism of nutrients but also promoting immune homeostasis, immune responses and protection against pathogen colonization. The genome of the Gram-negative symbiont Bacteroides thetaiotaomicron, a dominant member of the human intestinal microbiota, encodes polysaccharide utilization loci PULs, the apparatus required to orchestrate the degradation of a specific glycan. EndoBT-3987 is a key endo-β-N-acetylglucosaminidase (ENGase) that initiates the degradation/processing of mammalian high-mannose-type (HM-type) N-glycans in the intestine. Here, we provide structural snapshots of EndoBT-3987, including the unliganded form, the EndoBT-3987-Man9GlcNAc2Asn substrate complex, and two EndoBT-3987-Man9GlcNAc and EndoBT-3987-Man5GlcNAc product complexes. In combination with alanine scanning mutagenesis and activity measurements we unveil the molecular mechanism of HM-type recognition and specificity for EndoBT-3987 and an important group of the GH18 ENGases, including EndoH, an enzyme extensively used in biotechnology, and for which the mechanism of substrate recognition was largely unknown.


The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA.

  • Daniel A Bonsor‎ et al.
  • The EMBO journal‎
  • 2018‎

Helicobacter pylori infects half of the world's population, and strains that encode the cag type IV secretion system for injection of the oncoprotein CagA into host gastric epithelial cells are associated with elevated levels of cancer. CagA translocation into host cells is dependent on interactions between the H. pylori adhesin protein HopQ and human CEACAMs. Here, we present high-resolution structures of several HopQ-CEACAM complexes and CEACAMs in their monomeric and dimeric forms establishing that HopQ uses a coupled folding and binding mechanism to engage the canonical CEACAM dimerization interface for CEACAM recognition. By combining mutagenesis with biophysical and functional analyses, we show that the modes of CEACAM recognition by HopQ and CEACAMs themselves are starkly different. Our data describe precise molecular mechanisms by which microbes exploit host CEACAMs for infection and enable future development of novel oncoprotein translocation inhibitors and H. pylori-specific antimicrobial agents.


Molecular Basis of Broad Spectrum N-Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2.

  • Erik H Klontz‎ et al.
  • ACS central science‎
  • 2019‎

Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen-deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.


GH18 endo-β-N-acetylglucosaminidases use distinct mechanisms to process hybrid-type N-linked glycans.

  • Beatriz Trastoy‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

N-glycosylation is one of the most abundant posttranslational modifications of proteins, essential for many physiological processes, including protein folding, protein stability, oligomerization and aggregation, and molecular recognition events. Defects in the N-glycosylation pathway cause diseases that are classified as congenital disorders of glycosylation. The ability to manipulate protein N-glycosylation is critical not only to our fundamental understanding of biology but also for the development of new drugs for a wide range of human diseases. Chemoenzymatic synthesis using engineered endo-β-N-acetylglucosaminidases (ENGases) has been used extensively to modulate the chemistry of N-glycosylated proteins. However, defining the molecular mechanisms by which ENGases specifically recognize and process N-glycans remains a major challenge. Here we present the X-ray crystal structure of the ENGase EndoBT-3987 from Bacteroides thetaiotaomicron in complex with a hybrid-type glycan product. In combination with alanine scanning mutagenesis, molecular docking calculations and enzymatic activity measurements conducted on a chemically engineered monoclonal antibody substrate unveil two mechanisms for hybrid-type recognition and processing by paradigmatic ENGases. Altogether, the experimental data provide pivotal insight into the molecular mechanism of substrate recognition and specificity for GH18 ENGases and further advance our understanding of chemoenzymatic synthesis and remodeling of homogeneous N-glycan glycoproteins.


The conformational landscape of a serpin N-terminal subdomain facilitates folding and in-cell quality control.

  • Upneet Kaur‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Many multi-domain proteins including the serpin family of serine protease inhibitors contain non-sequential domains composed of regions that are far apart in sequence. Because proteins are translated vectorially from N- to C-terminus, such domains pose a particular challenge: how to balance the conformational lability necessary to form productive interactions between early and late translated regions while avoiding aggregation. This balance is mediated by the protein sequence properties and the interactions of the folding protein with the cellular quality control machinery. For serpins, particularly α1-antitrypsin (AAT), mutations often lead to polymer accumulation in cells and consequent disease suggesting that the lability/aggregation balance is especially precarious. Therefore, we investigated the properties of progressively longer AAT N-terminal fragments in solution and in cells. The N-terminal subdomain, residues 1-190 (AAT190), is monomeric in solution and efficiently degraded in cells. More β-rich fragments, 1-290 and 1-323, form small oligomers in solution, but are still efficiently degraded, and even the polymerization promoting Siiyama (S53F) mutation did not significantly affect fragment degradation. In vitro, the AAT190 region is among the last regions incorporated into the final structure. Hydrogen-deuterium exchange mass spectrometry and enhanced sampling molecular dynamics simulations show that AAT190 has a broad, dynamic conformational ensemble that helps protect one particularly aggregation prone β-strand from solvent. These AAT190 dynamics result in transient exposure of sequences that are buried in folded, full-length AAT, which may provide important recognition sites for the cellular quality control machinery and facilitate degradation and, under favorable conditions, reduce the likelihood of polymerization.


Chemoenzymatic Fc glycosylation via engineered aldehyde tags.

  • Elizabeth L Smith‎ et al.
  • Bioconjugate chemistry‎
  • 2014‎

Glycoproteins with chemically defined glycosylation sites and structures are important biopharmaceutical targets and critical tools for glycobiology. One approach toward constructing such molecules involves chemical glycosylation of aldehyde-tagged proteins. Here, we report the installation of a genetically encoded aldehyde tag at the internal glycosylation site of the crystallizable fragment (Fc) of IgG1. We replaced the natural Fc N-glycosylation sequon with a five amino-acid sequence that was efficiently converted by recombinant formylglycine generating enzyme in vitro, thereby introducing aldehyde groups for subsequent chemical elaboration. Oxime-linked glycoconjugates were synthesized by conjugating aminooxy N-acetylglucosamine to the modified Fc followed by enzymatic transfer of complex N-glycans from corresponding glycan oxazolines by an EndoS-derived glycosynthase. In this manner we generated specific Fc glycoforms without relying on natural protein glycosylation machineries.


One-pot enzymatic glycan remodeling of a therapeutic monoclonal antibody by endoglycosidase S (Endo-S) from Streptococcus pyogenes.

  • Xin Tong‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2018‎

A facile, one-pot enzymatic glycan remodeling of antibody rituximab to produce homogeneous high-mannose and hybrid type antibody glycoforms is described. This method was based on the unique substrate specificity of the endoglycosidase S (Endo-S) from Streptococcus pyogenes. While Endo-S efficiently hydrolyzes the bi-antennary complex type IgG Fc N-glycans, we found that Endo-S did not hydrolyze the "ground state" high-mannose or hybrid glycoforms, and only slowly hydrolyzed the highly activated high-mannose or hybrid N-glycan oxazolines. Moreover, we found that wild-type Endo-S could efficiently use high-mannose or hybrid glycan oxazolines for transglycosylation without product hydrolysis. The combination of the remarkable difference in substrate specificity of Endo-S allows the deglycosylation of heterogeneous rituximab and the transglycosylation with glycan oxazoline to take place in one-pot without the need of isolating the deglycosylated intermediate or changing the enzyme to afford the high-mannose type, hybrid type, and some selectively modified truncated form of antibody glycoforms.


The Odd "RB" Phage-Identification of Arabinosylation as a New Epigenetic Modification of DNA in T4-Like Phage RB69.

  • Julie A Thomas‎ et al.
  • Viruses‎
  • 2018‎

In bacteriophages related to T4, hydroxymethylcytosine (hmC) is incorporated into the genomic DNA during DNA replication and is then further modified to glucosyl-hmC by phage-encoded glucosyltransferases. Previous studies have shown that RB69 shares a core set of genes with T4 and relatives. However, unlike the other “RB” phages, RB69 is unable to recombine its DNA with T4 or with the other “RB” isolates. In addition, despite having homologs to the T4 enzymes used to synthesize hmC, RB69 has no identified homolog to known glucosyltransferase genes. In this study we sought to understand the basis for RB69’s behavior using high-pH anion exchange chromatography (HPAEC) and mass spectrometry. Our analyses identified a novel phage epigenetic DNA sugar modification in RB69 DNA, which we have designated arabinosyl-hmC (ara-hmC). We sought a putative glucosyltranserase responsible for this novel modification and determined that RB69 also has a novel transferase gene, ORF003c, that is likely responsible for the arabinosyl-specific modification. We propose that ara-hmC was responsible for RB69 being unable to participate in genetic exchange with other hmC-containing T-even phages, and for its described incipient speciation. The RB69 ara-hmC also likely protects its DNA from some anti-phage type-IV restriction endonucleases. Several T4-related phages, such as E. coli phage JS09 and Shigella phage Shf125875 have homologs to RB69 ORF003c, suggesting the ara-hmC modification may be relatively common in T4-related phages, highlighting the importance of further work to understand the role of this modification and the biochemical pathway responsible for its production.


Antigen-Induced Allosteric Changes in a Human IgG1 Fc Increase Low-Affinity Fcγ Receptor Binding.

  • Chiara Orlandi‎ et al.
  • Structure (London, England : 1993)‎
  • 2020‎

Antibody structure couples adaptive and innate immunity via Fab (antigen binding) and Fc (effector) domains that are connected by unique hinge regions. Because antibodies harbor two or more Fab domains, they are capable of crosslinking multi-determinant antigens, which is required for Fc-dependent functions through associative interactions with effector ligands, including C1q and cell surface Fc receptors. The modular nature of antibodies, with distal ligand binding sites for antigen and Fc-ligands, is reminiscent of allosteric proteins, suggesting that allosteric interactions might contribute to Fc-mediated effector functions. This hypothesis has been pursued for over 40 years and remains unresolved. Here, we provide evidence that allosteric interactions between Fab and Fc triggered by antigen binding modulate binding of Fc to low-affinity Fc receptors (FcγR) for a human IgG1. This work opens the path to further dissection of the relative roles of allosteric and associative interactions in Fc-mediated effector functions.


Glycosylation-dependent opsonophagocytic activity of staphylococcal protein A antibodies.

  • Xinhai Chen‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Antibodies may bind to bacterial pathogens or their toxins to control infections, and their effector activity is mediated through the recruitment of complement component C1q or the engagement with Fcγ receptors (FcγRs). For bacterial pathogens that rely on a single toxin to cause disease, immunity correlates with toxin neutralization. Most other bacterial pathogens, including Staphylococcus aureus, secrete numerous toxins and evolved multiple mechanisms to escape opsonization and complement killing. Several vaccine candidates targeting defined surface antigens of S. aureus have failed to meet clinical endpoints. It is unclear that such failures can be solely attributed to the poor selection of antibody targets. Thus far, studies to delineate antibody-mediated uptake and killing of Gram-positive pathogens remain extremely limited. Here, we exploit 3F6-hIgG1, a human monoclonal antibody that binds and neutralizes the abundant surface-exposed Staphylococcal protein A (SpA). We find that galactosylation of 3F6-hIgG1 that favors C1q recruitment is indispensable for opsonophagocytic killing of staphylococci and for protection against bloodstream infection in animals. However, the simple removal of fucosyl residues, which results in reduced C1q binding and increased engagement with FcγR, maintains the opsonophagocytic killing and protective attributes of the antibody. We confirm these results by engineering 3F6-hIgG1 variants with biased binding toward C1q or FcγRs. While the therapeutic benefit of monoclonal antibodies against infectious disease agents may be debatable, the functional characterization of such antibodies represents a powerful tool for the development of correlates of protection that may guide future vaccine trials.


Distinct developmental and degenerative functions of SARM1 require NAD+ hydrolase activity.

  • E J Brace‎ et al.
  • PLoS genetics‎
  • 2022‎

SARM1 is the founding member of the TIR-domain family of NAD+ hydrolases and the central executioner of pathological axon degeneration. SARM1-dependent degeneration requires NAD+ hydrolysis. Prior to the discovery that SARM1 is an enzyme, SARM1 was studied as a TIR-domain adaptor protein with non-degenerative signaling roles in innate immunity and invertebrate neurodevelopment, including at the Drosophila neuromuscular junction (NMJ). Here we explore whether the NADase activity of SARM1 also contributes to developmental signaling. We developed transgenic Drosophila lines that express SARM1 variants with normal, deficient, and enhanced NADase activity and tested their function in NMJ development. We find that NMJ overgrowth scales with the amount of NADase activity, suggesting an instructive role for NAD+ hydrolysis in this developmental signaling pathway. While degenerative and developmental SARM1 signaling share a requirement for NAD+ hydrolysis, we demonstrate that these signals use distinct upstream and downstream mechanisms. These results identify SARM1-dependent NAD+ hydrolysis as a heretofore unappreciated component of developmental signaling. SARM1 now joins sirtuins and Parps as enzymes that regulate signal transduction pathways via mechanisms that involve NAD+ cleavage, greatly expanding the potential scope of SARM1 TIR NADase functions.


Evaluation of Two Chemoenzymatic Glycan Remodeling Approaches to Generate Site-Specific Antibody-Drug Conjugates.

  • Qiang Yang‎ et al.
  • Antibodies (Basel, Switzerland)‎
  • 2023‎

Fc-glycosite-specific antibody-drug conjugation represents a promising direction for the preparation of site-specific antibody-drug conjugates (ADCs). In the present research, we conducted a systemic evaluation of two endoglycosidase-catalyzed chemoenzymatic glycoengineering technologies to prepare glycosite-specific ADCs. In the first two-step approach, the antibody was deglycosylated and then reglycosylated with a modified intact N-glycan oxazoline. In the second one-pot approach, antibodies were deglycosylated and simultaneously glycosylated with a functionalized disaccharide oxazoline. For the comprehensive evaluation, we first optimized and scaled-up the preparation of azido glycan oxazolines. Afterwards, we proved that the one-pot glycan-remodeling approach was efficient for all IgG subclasses. Subsequently, we assembled respective ADCS using two technology routes, with two different linker-payloads combinations, and performed systemic in vitro and in vivo evaluations. All the prepared ADCs achieved high homogeneity and illustrated excellent stability in buffers with minimum aggregates, and exceptional stability in rat serum. All ADCs displayed a potent killing of BT-474 breast cancer cells. Moving to the mouse study, the ADCs prepared from two technology routes displayed potent and similar efficacy in a BT-474 xenograft model, which was comparable to an FDA-approved ADC generated from random conjugation. These ADCs also demonstrated excellent safety and did not cause body weight loss at the tested dosages.


The structure of NAD+ consuming protein Acinetobacter baumannii TIR domain shows unique kinetics and conformations.

  • Erik Klontz‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.


Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.

  • Denong Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2015‎

Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.


Evaluation of a glycoengineered monoclonal antibody via LC-MS analysis in combination with multiple enzymatic digestion.

  • Renpeng Liu‎ et al.
  • mAbs‎
  • 2016‎

Glycosylation affects the efficacy, safety and pharmacokinetics/pharmacodynamics properties of therapeutic monoclonal antibodies (mAbs), and glycoengineering is now being used to produce mAbs with improved efficacy. In this work, a glycoengineered version of rituximab was produced by chemoenzymatic modification to generate human-like N-glycosylation with α 2,6 linked sialic acid. This modified rituximab was comprehensively characterized by liquid chromatography-mass spectrometry and compared to commercially available rituximab. As anticipated, the majority of N-glycans were converted to α 2,6 linked sialic acid, in contrast to CHO-produced rituximab, which only contains α 2,3 linked sialic acid. Typical posttranslational modifications, such as pyro-glutamic acid formation at the N-terminus, oxidation at methionine, deamidation at asparagine, and disulfide linkages were also characterized in both the commercial and glycoengineered mAbs using multiple enzymatic digestion and mass spectrometric analysis. The comparative study reveals that the glycoengineering approach does not cause any additional posttranslational modifications in the antibody except the specific transformation of the glycoforms, demonstrating the mildness and efficiency of the chemoenzymatic approach for glycoengineering of therapeutic antibodies.


Chemoenzymatic synthesis and lectin recognition of a selectively fluorinated glycoprotein.

  • Jared Orwenyo‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2013‎

A chemoenzymatic glycosylation remodeling method for the synthesis of selectively fluorinated glycoproteins is described. The method consists of chemical synthesis of a fluoroglycan oxazoline and its use as donor substrate for endoglycosidase (ENGase)-catalyzed transglycosylation to a GlcNAc-protein to form a homogeneous fluoroglycoprotein. The approach was exemplified by the synthesis of fluorinated glycoforms of ribonuclease B (RNase B). An interesting finding was that fluorination at the C-6 of the 6-branched mannose moiety in the Man3GlcNAc core resulted in significantly enhanced reactivity of the substrate in enzymatic transglycosylation. A structural analysis suggests that the enhancement in reactivity may come from favorable hydrophobic interactions between the fluorine and a tyrosine residue in the catalytic site of the enzyme (Endo-A). SPR analysis of the binding of the fluorinated glycoproteins with lectin concanavalin A (con A) revealed the importance of the 6-hydroxyl group on the α-1,6-branched mannose moiety in con A recognition. The present study establishes a facile method for preparation of selectively fluorinated glycoproteins that can serve as valuable probes for elucidating specific carbohydrate-protein interactions.


MUC1 glycopeptide epitopes predicted by computational glycomics.

  • Wei Song‎ et al.
  • International journal of oncology‎
  • 2012‎

Bioinformatic tools and databases for glycobiology and glycomics research are playing increasingly important roles in functional studies. However, to verify hypotheses generated by computational glycomics with empirical functional assays is only an emerging field. In this study, we predicted glycan epitopes expressed by a cancer-derived mucin, MUC1, by computational glycomics. MUC1 is expressed by tumor cells with a deficiency in glycosylation. Although numerous diagnostic reagents and cancer vaccines have been designed based on abnormally glycosylated MUC1 sequences, the glycan and peptide sequences responsible for immune responses in vivo are poorly understood. The immunogenicity of synthetic MUC1 glycopeptides bearing Tn or sialyl-Tn antigens have been studied in mouse models, while authentic glyco-epitopes expressed by tumor cells remain unclear. To examine the immunogenicity of authentic cancer derived MUC1 glyco-epitopes, we expressed membrane bound forms of MUC1 tandem repeats in Jurkat, a mutant cancer cell line deficient of mucin-type core-1 β1-3 galactosyltransferase activity, and immunized mice with cancer cells expressing authentic MUC1 glyco-epitopes. Antibody responses to individual glyco-epitopes were determined by chemically synthesized candidate MUC1 glycopeptides predicted through computational glycomics. Monoclonal antibodies can be generated toward chemically synthesized glycopeptide sequences. With RPAPGS(Tn)TAPPAHG as an example, a monoclonal antibody 16A, showed 25-fold higher binding to glycosylated peptide (EC50=9.278±1.059 ng/ml) compared to its non-glycosylated form (EC(50)=247.3±16.29 ng/ml) as measured by ELISA experiments with plate-bound peptides. A library of monoclonal antibodies toward authentic MUC1 glycopeptide epitopes may be a valuable tool for studying glycan and peptide sequences in cancer, as well as reagents for diagnosis and therapy.


Mechanism of cooperative N-glycan processing by the multi-modular endoglycosidase EndoE.

  • Mikel García-Alija‎ et al.
  • Nature communications‎
  • 2022‎

Bacteria produce a remarkably diverse range of glycoside hydrolases to metabolize glycans from the environment as a primary source of nutrients, and to promote the colonization and infection of a host. Here we focus on EndoE, a multi-modular glycoside hydrolase secreted by Enterococcus faecalis, one of the leading causes of healthcare-associated infections. We provide X-ray crystal structures of EndoE, which show an architecture composed of four domains, including GH18 and GH20 glycoside hydrolases connected by two consecutive three α-helical bundles. We determine that the GH20 domain is an exo-β-1,2-N-acetylglucosaminidase, whereas the GH18 domain is an endo-β-1,4-N-acetylglucosaminidase that exclusively processes the central core of complex-type or high-mannose-type N-glycans. Both glycoside hydrolase domains act in a concerted manner to process diverse N-glycans on glycoproteins, including therapeutic IgG antibodies. EndoE combines two enzyme domains with distinct functions and glycan specificities to play a dual role in glycan metabolism and immune evasion.


Chemoenzymatic Synthesis and Antibody Binding of HIV-1 V1/V2 Glycopeptide-Bacteriophage Qβ Conjugates as a Vaccine Candidate.

  • Guanghui Zong‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The broadly neutralizing antibody PG9 recognizes a unique glycopeptide epitope in the V1V2 domain of HIV-1 gp120 envelope glycoprotein. The present study describes the design, synthesis, and antibody-binding analysis of HIV-1 V1V2 glycopeptide-Qβ conjugates as a mimic of the proposed neutralizing epitope of PG9. The glycopeptides were synthesized using a highly efficient chemoenzymatic method. The alkyne-tagged glycopeptides were then conjugated to the recombinant bacteriophage (Qβ), a virus-like nanoparticle, through a click reaction. Antibody-binding analysis indicated that the synthetic glycoconjugates showed significantly enhanced affinity for antibody PG9 compared with the monomeric glycopeptides. It was also shown that the affinity of the Qβ-conjugates for antibody PG9 was dependent on the density of the glycopeptide antigen display. The glycopeptide-Qβ conjugates synthesized represent a promising candidate of HIV-1 vaccine.


An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques.

  • Yongjun Sui‎ et al.
  • PNAS nexus‎
  • 2022‎

Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: