Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior.

  • Yonwoo Jung‎ et al.
  • Nature neuroscience‎
  • 2016‎

Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2l mRNA, encoding a component of a histone methyltransferase complex. We therefore examined genome-wide changes in trimethylation of histone H3 on Lys4 (H3K4me3), a mark induced by the Ash2l complex associated with increased gene transcription. A large proportion of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4me3. Knockdown of Ash2l or Mef2c abolished nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuated nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimicked nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior.


A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.

  • Ramiro Nández‎ et al.
  • eLife‎
  • 2014‎

Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations.


Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size.

  • Matthew B Johnson‎ et al.
  • Nature‎
  • 2018‎

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) 1 , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans2-4, but have little effect on the brains of mice5-9; this probably reflects evolutionarily divergent functions of ASPM10,11. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity12-14 than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients3,4, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates12-16. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.


NetrinG1+ cancer-associated fibroblasts generate unique extracellular vesicles that support the survival of pancreatic cancer cells under nutritional stress.

  • Kristopher S Raghavan‎ et al.
  • Cancer research communications‎
  • 2022‎

It is projected that in 5 years, pancreatic cancer will become the second deadliest cancer in the United States. A unique aspect of pancreatic ductal adenocarcinoma (PDAC) is its stroma; rich in cancer-associated fibroblasts (CAFs) and a dense CAF-generated extracellular matrix (ECM). These pathogenic stroma CAF/ECM units cause the collapse of local blood vessels rendering the tumor microenvironment nutrient-poor. PDAC cells are able to survive this state of nutrient stress via support from CAF-secreted material, which includes small extracellular vesicles (sEVs). The tumor-supportive CAFs possess a distinct phenotypic profile, compared to normal-like fibroblasts, expressing NetrinG1 (NetG1) at the plasma membrane, and active Integrin α5β1 localized to the multivesicular bodies; traits indicative of poor patient survival. We herein report that NetG1+ CAFs secrete sEVs that stimulate Akt-mediated survival in nutrient-deprived PDAC cells, protecting them from undergoing apoptosis. Further, we show that NetG1 expression in CAFs is required for the pro-survival properties of sEVs. Additionally, we report that the above-mentioned CAF markers are secreted in distinct subpopulations of EVs; with NetG1 being enriched in exomeres, and Integrin α5β1 being enriched in exosomes. Finally, we found that NetG1 and Integrin α5β1 were detected in sEVs collected from plasma of PDAC patients, while their levels were significantly lower in plasma-derived sEVs of sex/age-matched healthy donors. The discovery of these tumor-supporting CAF-EVs elucidates novel avenues in tumor-stroma interactions and pathogenic stroma detection.


Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer.

  • Bo Zhou‎ et al.
  • IEEE transactions on medical imaging‎
  • 2021‎

Limited view tomographic reconstruction aims to reconstruct a tomographic image from a limited number of projection views arising from sparse view or limited angle acquisitions that reduce radiation dose or shorten scanning time. However, such a reconstruction suffers from severe artifacts due to the incompleteness of sinogram. To derive quality reconstruction, previous methods use UNet-like neural architectures to directly predict the full view reconstruction from limited view data; but these methods leave the deep network architecture issue largely intact and cannot guarantee the consistency between the sinogram of the reconstructed image and the acquired sinogram, leading to a non-ideal reconstruction. In this work, we propose a cascaded residual dense spatial-channel attention network consisting of residual dense spatial-channel attention networks and projection data fidelity layers. We evaluate our methods on two datasets. Our experimental results on AAPM Low Dose CT Grand Challenge datasets demonstrate that our algorithm achieves a consistent and substantial improvement over the existing neural network methods on both limited angle reconstruction and sparse view reconstruction. In addition, our experimental results on Deep Lesion datasets demonstrate that our method is able to generate high-quality reconstruction for 8 major lesion types.


Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment.

  • Lynn Jeanette Savic‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2020‎

To establish magnetic resonance (MR)-based molecular imaging paradigms for the noninvasive monitoring of extracellular pH (pHe) as a functional surrogate biomarker for metabolic changes induced by locoregional therapy of liver cancer.


Extracellular 5'-methylthioadenosine inhibits intracellular symmetric dimethylarginine protein methylation of FUSE-binding proteins.

  • Baiqing Tang‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with symmetric dimethylarginine (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the protein arginine methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found because of catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by MTA occurs within 48 h, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element site located upstream of Myc and other promoters. Using a transcription reporter construct containing the far upstream element site, we demonstrate that MTA addition can reduce transcription, suggesting that the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.


Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia.

  • Matthew J Cooper‎ et al.
  • PloS one‎
  • 2013‎

Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.


Quantitative β mapping for calibrated fMRI.

  • Christina Y Shu‎ et al.
  • NeuroImage‎
  • 2016‎

The metabolic and hemodynamic dependencies of the blood oxygenation level-dependent (BOLD) signal form the basis for calibrated fMRI, where the focus is on oxidative energy demanded by neural activity. An important part of calibrated fMRI is the power-law relationship between the BOLD signal and the deoxyhemoglobin concentration, which in turn is related to the ratio between oxidative demand (CMRO2) and blood flow (CBF). The power-law dependence between BOLD signal and deoxyhemoglobin concentration is signified by a scaling exponent β. Until recently most studies assumed a β value of 1.5, which is based on numerical simulations of the extravascular BOLD component. Since the basal value of CMRO2 and CBF can vary from subject-to-subject and/or region-to-region, a method to independently measure β in vivo should improve the accuracy of calibrated fMRI results. We describe a new method for β mapping through characterizing R2' - the most sensitive relaxation component of BOLD signal (i.e., the reversible magnetic susceptibility component that is predominantly of extravascular origin at high magnetic field) - as a function of intravascular magnetic susceptibility induced by an FDA-approved superparamagnetic contrast agent. In α-chloralose anesthetized rat brain, at 9.4 T, we measured β values of ~0.8 uniformly across large neocortical swathes, with lower magnitude and more heterogeneity in subcortical areas. Comparison of β maps in rats anesthetized with medetomidine and α-chloralose revealed that β is independent of neural activity levels at these resting states. We anticipate that this method for β mapping can help facilitate calibrated fMRI for clinical studies.


Protein kinase CK2 catalyzes tyrosine phosphorylation in mammalian cells.

  • Greg Vilk‎ et al.
  • Cellular signalling‎
  • 2008‎

Protein kinase CK2 exhibits oncogenic activity in mice and is over-expressed in a number of tumors or leukemic cells. On the basis of its amino acid sequence and a wealth of experimental information, CK2 has traditionally been classified as a protein serine/threonine kinase. In contrast to this traditional view of CK2, recent evidence has shown that CK2 can also phosphorylate tyrosine residues under some circumstances in vitro and in yeast. In this study, we provide definitive evidence demonstrating that CK2 also exhibits tyrosine kinase activity in mammalian cells. Tyrosine phosphorylation of CK2 in cells and in CK2 immunoprecipitates is dependent on CK2 activity and is inhibited by the CK2 selective inhibitor 4,5,6,7-tetrabromobenzotriazole. Examination of phosphotyrosine profiles in cells reveals a number of proteins, including CK2 itself, which exhibit increased tyrosine phosphorylation when CK2 levels are increased. Peptide arrays to evaluate the specificity determinants for tyrosine phosphorylation by CK2 reveal that its specificity for tyrosine phosphorylation is distinct from its specificity for serine/threonine phosphorylation. Of particular note is the requirement for an aspartic acid immediately C-terminal to the phosphorylatable tyrosine residue. Collectively, these data provide conclusive evidence that CK2 catalyzes the phosphorylation of tyrosine residues in mammalian cells, a finding that adds a new level of complexity to the challenge of elucidating its cellular functions. Furthermore, these results raise the possibility that increased CK2 levels that frequently accompany transformation may contribute to the increased tyrosine phosphorylation that occurs in transformed cells.


Tumor-targeted pH-low insertion peptide delivery of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy.

  • Wu Liu‎ et al.
  • Translational oncology‎
  • 2020‎

Tumor targeting studies using metallic nanoparticles (NPs) have shown that the enhanced permeability and retention effect may not be sufficient to deliver the amount of intratumoral and intracellular NPs needed for effective in vivo radiosensitization. This work describes a pH-Low Insertion Peptide (pHLIP) targeted theranostic agent to enable image-guided NP-enhanced radiotherapy using a clinically feasible amount of injected NPs. Conventional gadolinium (Gd) NPs were conjugated to pHLIPs and evaluated in vitro for radiosensitivity and in vivo for mouse MRI. Cultured A549 human lung cancer cells were incubated with 0.5 mM of pHLIP-GdNP or conventional GdNP. Mass spectrometry showed 78-fold more cellular Gd uptake with pHLIP-GdNPs, and clonogenic survival assays showed 44% more enhanced radiosensitivity by 5 Gy irradiation with pHLIP-GdNPs at pH 6.2. In contrast to conventional GdNPs, MR imaging of tumor-bearing mice showed pHLIP-GdNPs had a long retention time in the tumor (>9 h), suitable for radiotherapy, and penetrated into the poorly-vascularized tumor core. The Gd-enhanced tumor corresponded with low-pH areas also independently measured by an in vivo molecular MRI technique. pHLIPs actively target cell surface acidity from tumor cell metabolism and deliver GdNPs into cells in solid tumors. Intracellular delivery enhances the effect of short-range radiosensitizing photoelectrons and Auger electrons. Because acidity is a general hallmark of tumor cells, the delivery is more general than antibody targeting. Imaging the in vivo NP biodistribution and more acidic (often more aggressive) tumors has the potential for quantitative radiotherapy treatment planning and pre-selecting patients who will likely benefit more from NP radiation enhancement.


Regional myocardial strain analysis via 2D speckle tracking echocardiography: validation with sonomicrometry and correlation with regional blood flow in the presence of graded coronary stenoses and dobutamine stress.

  • John C Stendahl‎ et al.
  • Cardiovascular ultrasound‎
  • 2020‎

Quantitative regional strain analysis by speckle tracking echocardiography (STE) may be particularly useful in the assessment of myocardial ischemia and viability, although reliable measurement of regional strain remains challenging, especially in the circumferential and radial directions. We present an acute canine model that integrates a complex sonomicrometer array with microsphere blood flow measurements to evaluate regional myocardial strain and flow in the setting of graded coronary stenoses and dobutamine stress. We apply this unique model to rigorously evaluate a commercial 2D STE software package and explore fundamental regional myocardial flow-function relationships.


Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH.

  • Jyotsna U Rao‎ et al.
  • Scientific reports‎
  • 2017‎

Gliomas maintain an acidic extracellular pH (pHe), which promotes tumor growth and builds resistance to therapy. Given evidence that acidic pHe beyond the tumor core indicates infiltration, we hypothesized that imaging the intratumoral pHe in relation to the peritumoral pHe can provide a novel readout of therapeutic influence on the tumor microenvironment. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes chemical shifts of non-exchangeable protons from macrocyclic chelates (e.g., DOTP8-) complexed with paramagnetic thulium (Tm3+), to generate pHe maps in rat brains bearing U251 tumors. Following TmDOTP5- infusion, T2-weighted MRI provided delineation of the tumor boundary and BIRDS was used to image the pHe gradient between intratumoral and peritumoral regions (ΔpHe) in both untreated and temozolomide treated (40 mg/kg) rats bearing U251 tumors. Treated rats had reduced tumor volume (p < 0.01), reduced proliferation (Ki-67 staining; p < 0.03) and apoptosis induction (cleaved Caspase-3 staining; p < 0.001) when compared to untreated rats. The ΔpHe was significantly higher in untreated compared to treated rats (p < 0.002), suggesting that temozolomide, which induces apoptosis and hinders proliferation, also normalizes intratumoral pHe. Thus, BIRDS can be used to map the ΔpHe in gliomas and provide a physiological readout of the therapeutic response on the tumor microenvironment.


White matter abnormalities in the Hdc knockout mouse, a model of tic and OCD pathophysiology.

  • Kantiya Jindachomthong‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2022‎

An inactivating mutation in the histidine decarboxylase gene (Hdc) has been identified as a rare but high-penetrance genetic cause of Tourette syndrome (TS). TS is a neurodevelopmental syndrome characterized by recurrent motor and vocal tics; it is accompanied by structural and functional abnormalities in the cortico-basal ganglia circuitry. Hdc, which is expressed both in the posterior hypothalamus and peripherally, encodes an enzyme required for the biosynthesis of histamine. Hdc knockout mice (Hdc-KO) functionally recapitulate this mutation and exhibit behavioral and neurochemical abnormalities that parallel those seen in patients with TS.


Imaging Hallmarks of the Tumor Microenvironment in Glioblastoma Progression.

  • John J Walsh‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Glioblastoma progression involves multifaceted changes in vascularity, cellularity, and metabolism. Capturing such complexities of the tumor niche, from the tumor core to the periphery, by magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) methods has translational impact. In human-derived glioblastoma models (U87, U251) we made simultaneous and longitudinal measurements of tumor perfusion (Fp), permeability (Ktrans), and volume fractions of extracellular (ve) and blood (vp) spaces from dynamic contrast enhanced (DCE) MRI, cellularity from apparent diffusion coefficient (ADC) MRI, and extracellular pH (pHe) from an MRSI method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Spatiotemporal patterns of these parameters during tumorigenesis were unique for each tumor. While U87 tumors grew faster, Fp, Ktrans, and vp increased with tumor growth in both tumors but these trends were more pronounced for U251 tumors. Perfused regions between tumor periphery and core with U87 tumors exhibited higher Fp, but Ktrans of U251 tumors remained lowest at the tumor margin, suggesting primitive vascularization. Tumor growth was uncorrelated with ve, ADC, and pHe. U87 tumors showed correlated regions of reduced ve and lower ADC (higher cellularity), suggesting ongoing proliferation. U251 tumors revealed that the tumor core had higher ve and elevated ADC (lower cellularity), suggesting necrosis development. The entire tumor was uniformly acidic (pHe 6.1-6.8) early and throughout progression, but U251 tumors were more acidic, suggesting lower aerobic glycolysis in U87 tumors. Characterizing these cancer hallmarks with DCE-MRI, ADC-MRI, and BIRDS-MRSI will be useful for exploring tumorigenesis as well as timely therapies targeted to specific vascular and metabolic aspects of the tumor microenvironment.


An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism.

  • Archana Venkataraman‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of "language" and "comprehension" as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes "social" and "person". The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder.


Brain region and activity-dependent properties of M for calibrated fMRI.

  • Christina Y Shu‎ et al.
  • NeuroImage‎
  • 2016‎

Calibrated fMRI extracts changes in oxidative energy demanded by neural activity based on hemodynamic and metabolic dependencies of the blood oxygenation level-dependent (BOLD) response. This procedure requires the parameter M, which is determined from the dynamic range of the BOLD signal between deoxyhemoglobin (paramagnetic) and oxyhemoglobin (diamagnetic). Since it is unclear if the range of M-values in human calibrated fMRI is due to regional/state differences, we conducted a 9.4T study to measure M-values across brain regions in deep (α-chloralose) and light (medetomidine) anesthetized rats, as verified by electrophysiology. Because BOLD signal is captured differentially by gradient-echo (R2*) and spin-echo (R2) relaxation rates, we measured M-values by the product of the fMRI echo time and R2' (i.e., the reversible magnetic susceptibility component), which is given by the absolute difference between R2* and R2. While R2' mapping was shown to be dependent on the k-space sampling method used, at nominal spatial resolutions achieved at high magnetic field of 9.4T the M-values were quite homogenous across cortical gray matter. However cortical M-values varied in relation to neural activity between brain states. The findings from this study could improve precision of future calibrated fMRI studies by focusing on the global uniformity of M-values in gray matter across different resting activity levels.


Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2.

  • Marialuigia Spinelli‎ et al.
  • JCI insight‎
  • 2021‎

Failed or altered gliogenesis is a major characteristic of diffuse white matter injury in survivors of premature birth. The developmentally regulated long noncoding RNA (lncRNA) H19 inhibits S-adenosylhomocysteine hydrolase (SAHH) and contributes to methylation of diverse cellular components, such as DNA, RNA, proteins, lipids, and neurotransmitters. We showed that the pregnancy-derived synthetic PreImplantation Factor (sPIF) induces expression of the nuclear receptor corepressor 2 (NCOR2) via H19/SAHH-mediated DNA demethylation. In turn, NCOR2 affects oligodendrocyte differentiation markers. Accordingly, after hypoxic-ischemic brain injury in rodents, myelin protection and oligodendrocytes' fate are in part modulated by sPIF and H19. Our results revealed an unexpected mechanism of the H19/SAHH axis underlying myelin preservation during brain recovery and its use in treating neurodegenerative diseases can be envisioned.


Multiparameter analysis of timelapse imaging reveals kinetics of megakaryocytic erythroid progenitor clonal expansion and differentiation.

  • Vanessa M Scanlon‎ et al.
  • Scientific reports‎
  • 2022‎

Single-cell assays have enriched our understanding of hematopoiesis and, more generally, stem and progenitor cell biology. However, these single-end-point approaches provide only a static snapshot of the state of a cell. To observe and measure dynamic changes that may instruct cell fate, we developed an approach for examining hematopoietic progenitor fate specification using long-term (> 7-day) single-cell time-lapse imaging for up to 13 generations with in situ fluorescence staining of primary human hematopoietic progenitors followed by algorithm-assisted lineage tracing. We analyzed progenitor cell dynamics, including the division rate, velocity, viability, and probability of lineage commitment at the single-cell level over time. We applied a Markov probabilistic model to predict progenitor division outcome over each generation in culture. We demonstrated the utility of this methodological pipeline by evaluating the effects of the cytokines thrombopoietin and erythropoietin on the dynamics of self-renewal and lineage specification in primary human bipotent megakaryocytic-erythroid progenitors (MEPs). Our data support the hypothesis that thrombopoietin and erythropoietin support the viability and self-renewal of MEPs, but do not affect fate specification. Thus, single-cell tracking of time-lapse imaged colony-forming unit assays provides a robust method for assessing the dynamics of progenitor self-renewal and lineage commitment.


Mapping Extracellular pH of Gliomas in Presence of Superparamagnetic Nanoparticles: Towards Imaging the Distribution of Drug-Containing Nanoparticles and Their Curative Effect on the Tumor Microenvironment.

  • Samuel Maritim‎ et al.
  • Contrast media & molecular imaging‎
  • 2017‎

Since brain's microvasculature is compromised in gliomas, intravenous injection of tumor-targeting nanoparticles containing drugs (D-NPs) and superparamagnetic iron oxide (SPIO-NPs) can deliver high payloads of drugs while allowing MRI to track drug distribution. However, therapeutic effect of D-NPs remains poorly investigated because superparamagnetic fields generated by SPIO-NPs perturb conventional MRI readouts. Because extracellular pH (pHe) is a tumor hallmark, mapping pHe is critical. Brain pHe is measured by biosensor imaging of redundant deviation in shifts (BIRDS) with lanthanide agents, by detecting paramagnetically shifted resonances of nonexchangeable protons on the agent. To test the hypothesis that BIRDS-based pHe readout remains uncompromised by presence of SPIO-NPs, we mapped pHe in glioma-bearing rats before and after SPIO-NPs infusion. While SPIO-NPs accumulation in the tumor enhanced MRI contrast, the pHe inside and outside the MRI-defined tumor boundary remained unchanged after SPIO-NPs infusion, regardless of the tumor type (9L versus RG2) or agent injection method (renal ligation versus coinfusion with probenecid). These results demonstrate that we can simultaneously and noninvasively image the specific location and the healing efficacy of D-NPs, where MRI contrast from SPIO-NPs can track their distribution and BIRDS-based pHe can map their therapeutic impact.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: