Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Therapeutic effect and metabolomics mechanism of Patrinia Villosa (Thunb.) juss on liver injury in rats.

  • Li-Man Qiao‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Patrinia villosa (Thunb.) Juss (P.V) is widely used in the treatment of chronic diseases, such as appendicitis, enteritis and gynecological inflammation. Modern research indicated that the herb has pharmacological effect on liver injury caused by inflammation, but the metabolomics mechanism is not clear. For the purpose of discovering the therapeutic effect and metabolomic mechanism of P.V on liver injury, 40 Sprague-Dawley (SD) rats were divided into normal group, model group, and P.V groups (0.98, 1.97, and 2.96 g/kg). The model group and P.V groups were injected intraperitoneally with 40% CCl4 (v/v, olive oil) to establish liver injury model. After administration of P.V for seven consecutive days. Therapeutic effect of P.V on liver injury rats were analyzed. P.V could decrease serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels of liver injury rats as a dose-dependent manner. Compared with the model group, the pathological analysis of liver tissue of P.V groups exhibit significant decrease tendency of hepatic tissue structure destruction, cytoplasmic vacuolation, cellular swelling, and inflammatory cell infiltration as a dose-dependent manner. 82 endogenous metabolites in rat serum and liver were analyzed by Ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). 14 metabolites in serum and 26 metabolites in liver were significantly different between the P.V group (2.96 g/kg) and the model group. Metabolic pathway analysis revealed that the main pathway including alanine, aspartate and glutamate metabolism, and TCA cycle were significantly altered. It is suggested that P.V can alleviate CCl4 induced liver injury, and its effect on metabolites may be an important mechanism of action.


Sodium arsenite exposure inhibits histone acetyltransferase p300 for attenuating H3K27ac at enhancers in mouse embryonic fibroblast cells.

  • Yan Zhu‎ et al.
  • Toxicology and applied pharmacology‎
  • 2018‎

Both epidemiological investigations and animal studies have linked arsenic-contaminated water to cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanism remains to be determined. Herein we explore the initial epigenetic changes via acute sodium arsenite (As) exposures of mouse embryonic fibroblast (MEF) cells and histone H3K79 methyltransferase Dot1L knockout (Dot1L-/-) MEF cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute As exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-qPCR/seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in As exposure. Significantly, As exposure-reduced H3K27ac and H3K4me1 inhibited the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4) that both are tumor suppressor genes. Collectively, our investigations identified p300 as an internal bridging factor within cells to sense external environmental As exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis.


Paraquat inhibited differentiation in human neural progenitor cells (hNPCs) and down regulated miR-200a expression by targeting CTNNB1.

  • Min Huang‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2016‎

Paraquat (PQ) exposure influences central nervous system and results in serious neurotoxicity in vitro and in vivo. However, the role of PQ exposure in the development of CNS remains unclear. In present study, we investigated microRNAs (miRNAs) expression profiling and cell differential status following PQ treatment in human neural progenitor cells (hNPCs) as well as involved mechanism. Microarray profiling of miRNAs expression of PQ treated cell line and their corresponding control was determined. Differentially expression miRNAs were confirmed by quantitative real time PCR. Neural cell differentiation was performed with immunocytochemical analysis. Predicated target of miRNA was identified with luciferase reports and quantitatively analyzed using western blotting. Our results found PQ dramatically suppressed neural cell differentiation ability. 43 differentially expressed miRNAs were identified in PQ treated cells. The expression levels were over expressed in 25 miRNAs, whereas 18 miRNAs were suppressed. More importantly, we observed that miR-200a expression level to be lower in PQ treated cells. Luciferase assay and protein expression results confirmed the direct binding effect between CTNNB1 and miR-200a following PQ exposure. Collectively, our data suggested that down regulation of miR-200a in the PQ treated neural stem cell significantly participated in the differentiation processes and subsequently resulting in decreased cell viability, increased epithelial-mesenchymal transition process and the inhibited differential through CTNNB1 pathway.


Demethylation of the NRF2 Promoter Protects Against Carcinogenesis Induced by Nano-SiO2.

  • Dan Lou‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Nano silicon dioxide (Nano-SiO2) has been widely used in industries such as the field of biomedical engineering. Despite the existing evidence that Nano-SiO2 exposure could induce oxidative stress and inflammatory responses in multiple organ systems, the carcinogenicity of Nano-SiO2 exposure has rarely been investigated. Thus in this study, two types of human bronchial epithelial cell lines (16HBE and BEAS-2B) were selected as in vitro models to investigate the carcinogenicity of Nano-SiO2. Our results revealed that Nano-SiO2 induces a malignant cellular transformation in human bronchial epithelial cells according to the soft agar colony formation assay. The carcinogenesis induced by Nano-SiO2 was also confirmed in nude mice. By using immunofluorescence assay and high-performance capillary electrophoresis (HPCE), we observed a genome-wide DNA hypomethylation induced by Nano-SiO2. Besides the reduced enzyme activity of total DNMTs upon Nano-SiO2 treatment, altered expression of DNMTs and methyl-CpG binding proteins were observed. Besides, we found that the expression of NRF2 was activated by demethylation of CpG islands within the NRF2 promoter region and the overexpression of NRF2 could alleviate the carcinogenesis induced by Nano-SiO2. Taken together, our results suggested that Nano-SiO2 induces malignant cellular transformation with a global DNA hypomethylation, and the demethylation of NRF2 promoter activates the expression of NRF2, which plays an important role in protecting against the carcinogenesis induced by Nano-SiO2.


Mitochondrial dysfunction-induced H3K27 hyperacetylation perturbs enhancers in Parkinson's disease.

  • Minhong Huang‎ et al.
  • JCI insight‎
  • 2021‎

Mitochondrial dysfunction is a major pathophysiological contributor to the progression of Parkinson's disease (PD); however, whether it contributes to epigenetic dysregulation remains unknown. Here, we show that both chemically and genetically driven mitochondrial dysfunctions share a common mechanism of epigenetic dysregulation. Under both scenarios, lysine 27 acetylation of likely variant H3.3 (H3.3K27ac) increased in dopaminergic neuronal models of PD, thereby opening that region to active enhancer activity via H3K27ac. These vulnerable epigenomic loci represent potential transcription factor motifs for PD pathogenesis. We further confirmed that mitochondrial dysfunction induces H3K27ac in ex vivo and in vivo (MitoPark) neurodegenerative models of PD. Notably, the significantly increased H3K27ac in postmortem PD brains highlights the clinical relevance to the human PD population. Our results reveal an exciting mitochondrial dysfunction-metabolism-H3K27ac-transcriptome axis for PD pathogenesis. Collectively, the mechanistic insights link mitochondrial dysfunction to epigenetic dysregulation in dopaminergic degeneration and offer potential new epigenetic intervention strategies for PD.


TSER polymorphism is not associated with risk of pediatric acute lymphoblastic leukemia: A meta-analysis.

  • Zhaohua Qiao‎ et al.
  • Medicine‎
  • 2017‎

Accumulating studies have explored the effect of thymidylate synthase enhancer region (TSER) variation on risk of pediatric acute lymphoblastic leukemia (ALL) with controversial results. Therefore, this quantitative meta-analysis was performed to assess synthetically the association of TSER variation with susceptibility to develop pediatric ALL.


Two approaches reveal a new paradigm of 'switchable or genetics-influenced allele-specific DNA methylation' with potential in human disease.

  • Suzanne N Martos‎ et al.
  • Cell discovery‎
  • 2017‎

Imprinted genes are vulnerable to environmental influences during early embryonic development, thereby contributing to the onset of disease in adulthood. Monoallelic methylation at several germline imprints has been reported as DNMT1-dependent. However, which of these two epigenetic attributes, DNMT1-dependence or allelic methylation, renders imprinted genes susceptible to environmental stressors has not been determined. Herein, we developed a new approach, referred to as NORED, to identify 2468 DNMT1-dependent DNA methylation patterns in the mouse genome. We further developed an algorithm based on a genetic variation-independent approach (referred to as MethylMosaic) to detect 2487 regions with bimodal methylation patterns. Two approaches identified 207 regions, including known imprinted germline allele-specific methylation patterns (ASMs), that were both NORED and MethylMosaic regions. Examination of methylation in four independent mouse embryonic stem cell lines shows that two regions identified by both NORED and MethylMosaic (Hcn2 and Park7) did not display parent-of-origin-dependent allelic methylation. In these four F1 hybrid cell lines, genetic variation in Cast allele at Hcn2 locus introduces a transcription factor binding site for MTF-1 that may predispose Cast allelic hypomethylation in a reciprocal cross with either C57 or 129 strains. In contrast, each allele of Hcn2 ASM in J1 inbred cell line and Park7 ASM in four F1 hybrid cell lines seems to exhibit similar propensity to be either hypo- or hypermethylated, suggesting a 'random, switchable' ASM. Together with published results, our data on ASMs prompted us to propose a hypothesis of regional 'autosomal chromosome inactivation (ACI)' that may control a subset of autosomal genes. Therefore, our results open a new avenue to understand monoallelic methylation and provide a rich resource of candidate genes to examine in environmental and nutritional exposure models.


Clinical and genetic analysis in a Chinese cohort of children and adolescents with diabetes/persistent hyperglycemia.

  • Yu Ding‎ et al.
  • Journal of diabetes investigation‎
  • 2021‎

To investigate the genetic etiology and evaluate the diagnostic application of next-generation sequencing for diabetes/persistent hyperglycemia in children and adolescents.


Agrin expression is correlated with tumor development and poor prognosis in cholangiocarcinoma.

  • Meimei He‎ et al.
  • The Journal of international medical research‎
  • 2021‎

This study examined the role of agrin in the development of cholangiocarcinoma (CCA).


Scalable RT-LAMP-based SARS-CoV-2 testing for infection surveillance with applications in pandemic preparedness.

  • Dan Lou‎ et al.
  • EMBO reports‎
  • 2023‎

Throughout the SARS-CoV-2 pandemic, limited diagnostic capacities prevented sentinel testing, demonstrating the need for novel testing infrastructures. Here, we describe the setup of a cost-effective platform that can be employed in a high-throughput manner, which allows surveillance testing as an acute pandemic control and preparedness tool, exemplified by SARS-CoV-2 diagnostics in an academic environment. The strategy involves self-sampling based on gargling saline, pseudonymized sample handling, automated RNA extraction, and viral RNA detection using a semiquantitative multiplexed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with an analytical sensitivity comparable with RT-qPCR. We provide standard operating procedures and an integrated software solution for all workflows, including sample logistics, analysis by colorimetry or sequencing, and communication of results. We evaluated factors affecting the viral load and the stability of gargling samples as well as the diagnostic sensitivity of the RT-LAMP assay. In parallel, we estimated the economic costs of setting up and running the test station. We performed > 35,000 tests, with an average turnover time of < 6 h from sample arrival to result announcement. Altogether, our work provides a blueprint for fast, sensitive, scalable, cost- and labor-efficient RT-LAMP diagnostics, which is independent of potentially limiting clinical diagnostics supply chains.


Characterization of paraquat-induced miRNA profiling response in hNPCs undergoing proliferation.

  • Min Huang‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Aberration during the development of the central nervous system (CNS) due to environmental factors underlies a variety of adverse developmental outcomes. Paraquat (PQ) is a widely studied neurotoxicant that perturbs the normal structure/function of adult CNS. Yet, the impacts of PQ exposure on the developing CNS remain unclear. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development. Thus in the present study, we analyzed the impacts of PQ on the miRNome of human neural progenitor cells (hNPCs) during proliferation by using the Exiqon miRCURY™ LNA Array. A total of 66 miRNAs were identified as differentially expressed in proliferating hNPCs upon PQ treatment. miRTarBase prediction identified 1465 mRNAs, including several genes (e.g., nestin, sox1, ngn1) previously proved to be associated with the neural proliferation and differentiation, as target genes of PQ-induced differentially expressed miRNAs. The database for annotation, visualization and integrated discovery (DAVID) bioinformatics analysis showed that target genes were enriched in regulation of cell proliferation and differentiation, cell cycle and apoptosis as well as tumor protein 53 (p53), Wnt, Notch and mitogen-activated protein kinases (MAPK) signaling pathways (p < 0.001). These findings were confirmed by real-time RT-PCR. Based on our results we conclude that PQ-induced impacts on the miRNA profiling of hNPCs undergoing proliferation may underlie the developmental neurotoxicity of PQ.


Antifouling Membranes Prepared from Polyethersulfone Grafted with Poly(ethylene glycol) Methacrylate by Radiation-Induced Copolymerization in Homogeneous Solution.

  • Dan Lou‎ et al.
  • ACS omega‎
  • 2020‎

To synthesize evenly grafted copolymers, gamma radiation of homogeneous solutions was employed to graft poly(ethylene glycol) methacrylate (PEGMA) onto polyethersulfone (PES). The grafting was verified by Fourier transform infrared spectroscopy, and the degrees of grafting (DGs) were determined by elementary analysis. The PES-g-polyPEGMA copolymers with different DGs were obtained by changing the monomer concentration. Membranes were cast from pristine PES, PES/PEG blends, and PES-g-polyPEGMA with different DGs, respectively, via nonsolvent-induced phase separation. Results from water contact angle measurements and scanning electron microscopy analysis indicated that increasing DGs led to PES-g-polyPEGMA membranes with increasing hydrophilicity and porousness. Filtration experimental results showed that increasing DGs without adding pore-forming agents caused PES-g-polyPEGMA membranes with higher permeability. Compared with PES/PEG membranes with analogous permeation characteristics, in which PEG is added as a pore-forming agent, PES-g-polyPEGMA membranes exhibited superior antifouling properties.


The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure.

  • Dana M Freeman‎ et al.
  • Epigenetics & chromatin‎
  • 2020‎

Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: