Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,069 papers

Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain.

  • Qihan Wu‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2004‎

Most of dual-specificity protein phosphatases (DSPs) play an important role in the regulation of mitogenic signal transduction and controlling the cell cycle in response to extracellular stimuli. In this study, a novel human dual-specificity protein phosphatases gene named dual-specificity phosphatase 23 (DUSP23) was isolated by large-scale sequencing analysis of a human fetal brain cDNA library. Its cDNA was 726 bp in length, encoding a 150-amino acid polypeptide which contained a dual-specificity phosphatase catalytic (DSPc) domain but not a CDC25 homology (CH2) domain. Reverse transcription-PCR (RT-PCR) revealed that the DUSP23 was expressed in most fetal tissues and two adult tissues: testis and colon. Transient transfection experiment suggested that DUSP23 was localized in the cytoplasm of HEK293 cells. DUSP23 showed distinctive phosphatase activity toward p-nitrophenyl phosphate (pNPP), as well as oligopeptides containing phospho-tyrosine and phospho-threonine residues. Furthermore, DUSP23 could dephosphorylate p44ERK1 but not p38 and p54SAPKbeta in vitro. All the results indicated that DUSP23 was a novel protein phosphatase with dual substrate specificity.


Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block.

  • Melanie P Matheu‎ et al.
  • Immunity‎
  • 2008‎

Effector memory T (Tem) cells are essential mediators of autoimmune disease and delayed-type hypersensitivity (DTH), a convenient model for two-photon imaging of Tem cell participation in an inflammatory response. Shortly (3 hr) after entry into antigen-primed ear tissue, Tem cells stably attached to antigen-bearing antigen-presenting cells (APCs). After 24 hr, enlarged Tem cells were highly motile along collagen fibers and continued to migrate rapidly for 18 hr. Tem cells rely on voltage-gated Kv1.3 potassium channels to regulate calcium signaling. ShK-186, a specific Kv1.3 blocker, inhibited DTH and suppressed Tem cell enlargement and motility in inflamed tissue but had no effect on homing to or motility in lymph nodes of naive and central memory T (Tcm) cells. ShK-186 effectively treated disease in a rat model of multiple sclerosis. These results demonstrate a requirement for Kv1.3 channels in Tem cells during an inflammatory immune response in peripheral tissues. Targeting Kv1.3 allows for effector memory responses to be suppressed while central memory responses remain intact.


Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1.

  • Jimmy H Saw‎ et al.
  • Genome biology‎
  • 2008‎

Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.


MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells.

  • Hongping Xia‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

MicroRNAs (miRNAs) are non-protein-coding RNAs that function as post-transcriptional gene regulators. Recent evidence has shown that miRNA plays a pivotal role in the development of many cancers including glioma, a lethal brain cancer. We have recently compared the miRNA expression profiles between normal brain and glioma tissues from Chinese patients by miRNA microarray and identified a panel of differentially expressed miRNAs. Here, we studied the function of one miRNA, miR-15b, in glioma carcinogenesis and elucidated its downstream targets. Over-expression of miR-15b resulted in cell cycle arrest at G0/G1 phase while suppression of miR-15b expression resulted in a decrease of cell populations in G0/G1 and a corresponding increase of cell populations in S phase. We further showed that CCNE1 (encoding cyclin E1) is one of the downstream targets of miR-15b. Taken together, our findings indicate that miR-15b regulates cell cycle progression in glioma cells by targeting cell cycle-related molecules.


Anti-arthritis effect of a novel quinazoline derivative through inhibiting production of TNF-α mediated by TNF-α converting enzyme in murine collagen-induced arthritis model.

  • Yuzhi Pu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

TNF-α is a dominant inflammatory mediator in the pathogenesis of inflammatory diseases including rheumatoid arthritis. In our research, we discovered 2-chloro-N-(4-(2-morpholinoethoxy)phenyl)quinazolin-4-amine (9c) exhibited an outstanding anti-inflammatory activity on inhibiting TNF-α production with an IC50 of 8.86 μM in RAW264.7 cells. Interestingly, 9c had no effect on mRNA level of TNF-α but up-regulated the precursor of TNF-α (pro-TNF-α). Then, we studied TNF-α converting enzyme (TACE), which is the most important proteases responsible for the release of TNF-α from pro-TNF-α to soluble TNF-α. The results showed 9c reduced TACE both on the levels of mRNA and protein in a dose-dependent manner. In vivo study, collagen-induced arthritis (CIA) mice were treated by 9c orally. 9c exhibited significant anti-arthritis effect by ameliorating arthritic score, reducing inflammatory cell infiltration, protecting joints from destruction and decreasing the production of systemic TNF-α, IL-6, IL-1β. The underlying mechanism of 9c on CIA was coincided with the in vitro, which was mediated by TACE. In conclusion, we discovered a novel quinazoline derivative which ameliorates arthritis through inhibiting production of TNF-α mediated by TACE for the first time.


Intelectin 1 suppresses tumor progression and is associated with improved survival in gastric cancer.

  • Dan Li‎ et al.
  • Oncotarget‎
  • 2015‎

Recent evidence shows the emerging roles of intelectin 1 (ITLN1), a secretory lectin, in human cancers. Our previous studies have implicated the potential roles of ITLN1 in the aggressiveness of gastric cancer. Herein, we investigated the functions, downstream targets, and clinical significance of ITLN1 in the progression of gastric cancer. We demonstrated that ITLN1 increased the levels of hepatocyte nuclear factor 4 alpha (HNF4α), resulting in suppression of nuclear translocation and transcriptional activity of β-catenin in gastric cancer cells. Mechanistically, ITLN1 attenuated the activity of nuclear factor-kappa B, a transcription factor repressing the HNF4α expression, in gastric cancer cells through inactivating the phosphoinositide 3-kinase/AKT/Ikappa B kinase signaling. Gain- and loss-of-function studies demonstrated that ITLN1 suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. In addition, restoration of HNF4α expression prevented the gastric cancer cells from ITLN1-mediated changes in these biological features. In clinical gastric cancer tissues, HNF4α expression was positively correlated with that of ITLN1. Patients with high ITLN1 or HNF4α expression had greater survival probability. Taken together, these data indicate that ITLN1 suppresses the progression of gastric cancer through up-regulation of HNF4α, and is associated with improved survival in patients with gastric cancer.


MiR-506 Over-Expression Inhibits Proliferation and Metastasis of Breast Cancer Cells.

  • Fei Yu‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2015‎

This study aimed to investigate the relationship between miR-506 and proliferation and migration of breast cancer cells.


miRNA-337-3p suppresses neuroblastoma progression by repressing the transcription of matrix metalloproteinase 14.

  • Xuan Xiang‎ et al.
  • Oncotarget‎
  • 2015‎

Recent evidence shows the emerging roles of endogenous microRNAs (miRNAs) in repressing gene transcription. However, the miRNAs inhibiting the transcription of matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP crucial for the tumorigenesis and aggressiveness, still remain largely unknown. In this study, through mining computational algorithm program and genome-wide Argonaute profiling dataset, we identified one binding site of miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that miR-337-3p was under-expressed and inversely correlated with MMP-14 expression in clinical specimens and cell lines of neuroblastoma (NB), the most common extracranial solid tumor in childhood. Patients with high miR-337-3p expression had greater survival probability. miR-337-3p suppressed the promoter activity, nascent transcription, and expression of MMP-14, resulting in decreased levels of vascular endothelial growth factor, in cultured NB cell lines. Mechanistically, miR-337-3p recognized its binding site and recruited Argonaute 2 to facilitate the enrichment of repressive epigenetic markers and decrease the binding of RNA polymerase II and specificity protein 1 on the MMP-14 promoter. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo. In addition, restoration of MMP-14 expression rescued the NB cells from changes in these biological features. Taken together, these data indicate that miR-337-3p directly binds the MMP-14 promoter to repress its transcription, thus suppressing the progression of NB.


Over-expression of calpastatin inhibits calpain activation and attenuates post-infarction myocardial remodeling.

  • Tingqiao Ye‎ et al.
  • PloS one‎
  • 2015‎

Calpain is activated following myocardial infarction and ablation of calpastatin (CAST), an endogenous inhibitor of calpains, promotes left ventricular remodeling after myocardial infarction (MI). The present study aimed to investigate the effect of transgenic over-expression of CAST on the post-infarction myocardial remodeling process.


Intelectin 1 suppresses the growth, invasion and metastasis of neuroblastoma cells through up-regulation of N-myc downstream regulated gene 2.

  • Dan Li‎ et al.
  • Molecular cancer‎
  • 2015‎

Recent studies have revealed the potential roles of intelectin 1 (ITLN1) in tumorigenesis. However, its functions and underlying mechanisms in neuroblastoma (NB), the most common extracranial solid tumor in childhood, still remain largely unknown.


Rcan1 deficiency impairs neuronal migration and causes periventricular heterotopia.

  • Yang Li‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2015‎

Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis.


Hepatocyte nuclear factor 4 alpha promotes the invasion, metastasis and angiogenesis of neuroblastoma cells via targeting matrix metalloproteinase 14.

  • Xuan Xiang‎ et al.
  • Cancer letters‎
  • 2015‎

Matrix metalloproteinase 14 (MMP-14) is the only membrane-anchored MMP that plays critical roles in tumorigenesis and aggressiveness. However, the regulatory mechanisms underlying the high MMP-14 expression in neuroblastoma (NB), a highly malignant tumor in childhood, still remain unclear. Herein, we applied an integrative approach to analyze the public datasets, and identified hepatocyte nuclear factor 4 alpha (HNF4α) as a crucial transcription factor facilitating the MMP-14 expression in NB. In clinical NB tissues, HNF4α was up-regulated and positively correlated with MMP-14 expression, and was an independent prognostic factor for unfavorable outcome of patients. Luciferase reporter and chromatin immunoprecipitation assays indicated that HNF4α directly targeted the binding site within the MMP-14 promoter to facilitate its transcription. Knockdown of HNF4α suppressed the invasion, metastasis and angiogenesis of NB cells in vitro and in vivo. Conversely, ectopic expression of HNF4α promoted the invasion, metastasis and angiogenesis of NB cells. Importantly, restoration of MMP-14 expression prevented the tumor cells from HNF4α-mediated changes in these biological features. Taken together, HNF4α exhibits oncogenic activity that affects the aggressiveness and angiogenesis of NB through activating the transcription of MMP-14.


Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit.

  • Murat A Cevher‎ et al.
  • Nature structural & molecular biology‎
  • 2014‎

The evolutionarily conserved Mediator complex is a critical coactivator for RNA polymerase II (Pol II)-mediated transcription. Here we report the reconstitution of a functional 15-subunit human core Mediator complex and its characterization by functional assays and chemical cross-linking coupled to MS (CX-MS). Whereas the reconstituted head and middle modules can stably associate, basal and coactivator functions are acquired only after incorporation of MED14 into the bimodular complex. This results from a dramatically enhanced ability of MED14-containing complexes to associate with Pol II. Altogether, our analyses identify MED14 as both an architectural and a functional backbone of the Mediator complex. We further establish a conditional requirement for metazoan-specific MED26 that becomes evident in the presence of heterologous nuclear factors. This general approach paves the way for systematic dissection of the multiple layers of functionality associated with the Mediator complex.


Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation.

  • Xinhua Chen‎ et al.
  • PloS one‎
  • 2013‎

Saccharomyces boulardii (Sb) can protect against intestinal injury and tumor formation, but how this probiotic yeast controls protective mucosal host responses is unclear. Angiogenesis is an integral process of inflammatory responses in inflammatory bowel diseases (IBD) and required for mucosal remodeling during restitution. The aim of this study was to determine whether Sb alters VEGFR (vascular endothelial growth factor receptor) signaling, a central regulator of angiogenesis.


A single nucleotide polymorphism in the stromal cell-derived factor 1 gene is associated with coronary heart disease in Chinese patients.

  • Lei Feng‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

Coronary heart disease (CHD) is highly prevalent globally and a major cause of mortality. Genetic predisposition is a non-modifiable risk factor associated with CHD. Eighty-four Chinese patients with CHD and 253 healthy Chinese controls without CHD were recruited. Major clinical data were collected, and a single nucleotide polymorphism (SNP) in the stromal cell-derived factor 1 (SDF-1) gene at position 801 (G to A, rs1801157) in the 3'-untranslated region was identified. The correlation between rs1801157 genotypes and CHD was evaluated by a multivariate logistic regression analysis. The allele frequency in the CHD and control groups was in Hardy-Weinberg equilibrium (HWE) (p>0.05). The frequency of the GG genotype in the CHD group (59.5%) was significantly higher than that in the control group (49.8%) (p=0.036). A number of variables, including male sex, age, presence of hypertension, and the levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), uric acid, and total bilirubin, were associated with CHD in a primary univariate analysis. In a multivariable logistic regression analysis, the GG genotype (GG:AA, odds ratio (OR)=2.31, 95% confidence interval (CI)=1.21-5.23), male sex, advanced age (≥60 years), presence of hypertension, LDL-C level≥3.33 mg/dL, HDL-C level<1.03 mg/dL, and TG level≥1.7 mg/dL were independent risk factors for CHD.


miR-194 inhibits the proliferation, invasion, migration, and enhances the chemosensitivity of non-small cell lung cancer cells by targeting forkhead box A1 protein.

  • Xuchao Zhu‎ et al.
  • Oncotarget‎
  • 2016‎

Recent studies have implied that miRNAs may play a crucial role in tumor progression and may be involved in the modulation of some drug resistance in cancer cells. Earlier studies have demonstrated that miR-194 was involved in tumor metastasis and drug resistance in non-small cell lung cancer (NSCLC), whereas their expression and roles on NSCLC still need further elucidation. In the current study, we found that miR-194 is decreased in NSCLC samples compared with adjacent non-cancerous lung samples, and low expression of miR-194 predicts poor patient survival. Both in vitro and in vivo experiments showed that ectopic stable expression miR-194 suppressed proliferation, migration, invasion and metastasis and induced apoptosis in NSCLC cells and that this suppression could be reversed by reintroducing forkhead box A1 (FOXA1), a functional target of miR-194. In addition, miR-194 was downregulated in in cisplatin-resisted human NSCLC cell line-A549/DDP and overexpression of miR-194 increases cisplatin sensitivity. These findings suggested that miR-194 inhibits proliferation and metastasis and reverses cisplatin-resistance of NSCLC cells and may be useful as a new potential therapeutic target for NSCLC.


Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype.

  • Sidinh Luc‎ et al.
  • Cell reports‎
  • 2016‎

B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.


Identify the Atrophy of Alzheimer's Disease, Mild Cognitive Impairment and Normal Aging Using Morphometric MRI Analysis.

  • Xiangyu Ma‎ et al.
  • Frontiers in aging neuroscience‎
  • 2016‎

Quantitatively assessing the medial temporal lobe (MTL) structures atrophy is vital for early diagnosis of Alzheimer's disease (AD) and accurately tracking of the disease progression. Morphometry characteristics such as gray matter volume (GMV) and cortical thickness have been proved to be valuable measurements of brain atrophy. In this study, we proposed a morphometric MRI analysis based method to explore the cross-sectional differences and longitudinal changes of GMV and cortical thickness in patients with AD, MCI (mild cognitive impairment) and the normal elderly. High resolution 3D MRI data was obtained from ADNI database. SPM8 plus DARTEL was carried out for data preprocessing. Two kinds of z-score map were calculated to, respectively, reflect the GMV and cortical thickness decline compared with age-matched normal control database. A volume of interest (VOI) covering MTL structures was defined by group comparison. Within this VOI, GMV, and cortical thickness decline indicators were, respectively, defined as the mean of the negative z-scores and the sum of the normalized negative z-scores of the corresponding z-score map. Kruskal-Wallis test was applied to statistically identify group wise differences of the indicators. Support vector machines (SVM) based prediction was performed with a leave-one-out cross-validation design to evaluate the predictive accuracies of the indicators. Linear least squares estimation was utilized to assess the changing rate of the indicators for the three groups. Cross-sectional comparison of the baseline decline indicators revealed that the GMV and cortical thickness decline were more serious from NC, MCI to AD, with statistic significance. Using a multi-region based SVM model with the two indicators, the discrimination accuracy between AD and NC, MCI and NC, AD and MCI was 92.7, 91.7, and 78.4%, respectively. For three-way prediction, the accuracy was 74.6%. Furthermore, the proposed two indicators could also identify the atrophy rate differences among the three groups in longitudinal analysis. The proposed method could serve as an automatic and time-sparing approach for early diagnosis and tracking the progression of AD.


Hepatitis B virus X protein sensitizes HL-7702 cells to oxidative stress-induced apoptosis through modulation of the mitochondrial permeability transition pore.

  • Wen-Yu Gao‎ et al.
  • Oncology reports‎
  • 2017‎

Chronic hepatitis B virus (HBV) infection is a leading cause of liver cirrhosis and cancer. Among the pathogenic factors of HBV, HBV X protein (HBx) is attracting increased attention. Although it is documented that HBx is a multifunctional regulator that modulates cell inflammation and apoptosis, the exact mechanism remains controversial. In the present study, we explored the effect of HBx on oxidative stress-induced apoptosis in normal liver cell line, HL-7702. Our results showed that the existence of HBx affected mitochon-drial biogenesis by modulating the opening of the mitochondrial permeability transition pore (MPTP). Notably, this phenomenon was associated with a pronounced translocation of Bax from the cytosol to the mitochon-dria during the period of exposure to oxidative stress with a release of cytochrome c and activation of cleaved caspase-3 and PARP. Moreover, MPTP blockage with cyclosporin A prevented the translocation of Bax, and inhibited oxidative stress-induced apoptotic killing in the HBx-expressing HL-7702 cells. Our findings suggest that HBx exhibits pro-apoptotic effects upon normal liver cells following exposure to oxidative stress by modulating the MPTP gateway.


Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition.

  • Liping Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsiveness of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-l-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: