Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 323 papers

Visual attention modulates the asymmetric influence of each cerebral hemisphere on spatial perception.

  • Meijian Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Although the allocation of brain functions across the two cerebral hemispheres has aroused public interest over the past century, asymmetric interhemispheric cooperation under attentional modulation has been scarcely investigated. An example of interhemispheric cooperation is visual spatial perception. During this process, visual information from each hemisphere is integrated because each half of the visual field predominantly projects to the contralateral visual cortex. Both egocentric and allocentric coordinates can be employed for visual spatial representation, but they activate different areas in primate cerebral hemispheres. Recent studies have determined that egocentric representation affects the reaction time of allocentric perception; furthermore, this influence is asymmetric between the two visual hemifields. The egocentric-allocentric incompatibility effect and its asymmetry between the two hemispheres can produce this phenomenon. Using an allocentric position judgment task, we found that this incompatibility effect was reduced, and its asymmetry was eliminated on an attentional task rather than a neutral task. Visual attention might activate cortical areas that process conflicting information, such as the anterior cingulate cortex, and balance the asymmetry between the two hemispheres. Attention may enhance and balance this interhemispheric cooperation because this imbalance may also be caused by the asymmetric cooperation of each hemisphere in spatial perception.


Multi-targeting NGR-modified liposomes recognizing glioma tumor cells and vasculogenic mimicry for improving anti-glioma therapy.

  • Dan Huang‎ et al.
  • Oncotarget‎
  • 2016‎

Like the anti-angiogenic strategy, anti-vascular mimicry is considered as a novel targeting strategy for glioma. In the present study, we used NGR as a targeting ligand and prepared NGR-modified liposomes containing combretastatin A4 (NGR-SSL-CA4) in order to evaluate their potential targeting of glioma tumor cells and vasculogenic mimicry (VM) formed by glioma cells as well as their anti-VM activity in mice with glioma tumor cells. NGR-SSL-CA4 was prepared by a thin-film hydration method. The in vitro targeting of U87-MG (human glioma tumor cells) by NGR-modified liposomes was evaluated. The in vivo targeting activity of NGR-modified liposomes was tested in U87-MG orthotopic tumor-bearing nude mice. The anti-VM activity of NGR-SSL-CA4 was also investigated in vitro and in vivo. The targeting activity of the NGR-modified liposomes was demonstrated by in vitro flow cytometry and in vivo biodistribution. The in vitro anti-VM activity of NGR-SSL-CA4 was indicated in a series of cell migration and VM channel experiments. NGR-SSL-CA4 produced very marked anti-tumor and anti-VM activity in U87-MG orthotopic tumor-bearing mice in vivo. Overall, the NGR-SSL-CA4 has great potential in the multi-targeting therapy of glioma involving U87-MG cells, and the VM formed by U87-MG cells as well as endothelial cells producing anti-U87-MG cells, and anti-VM formed by U87-MG cells as well as anti-endothelial cell activity.


miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR.

  • Wenhua Li‎ et al.
  • Oncotarget‎
  • 2015‎

Liver metastasis is common in patients diagnosed with colorectal cancer (CRC), and is also correlated with poor outcome. In this study we screened the different expression profiles of microRNAs (miRNAs) on the development of liver metastasis in CRC patients. miR-99b-5p was found to be more than 6-fold higher in primary tumors than in matched liver metastases (P = 0.007). Expression of miR-99b-5p in primary tumors of patients with stage III CRC without liver metastases was higher than in CRC patients with liver metastases (P = 0.028). Up-regulated miR-99b-5p was associated with longer overall survival (P = 0.01). Besides, miR-99b-5p silencing in miR-99b-5p-positive CRC cell lines promoted cell migration and up-regulated mTOR, and vice versa. In addition, luciferase assays demonstrated that miR-99b-5p functioned as a tumor suppressor by targeting mTOR. Taken together, our results demonstrate thatmiR-99b-5p is differently expressed in primary CRC and liver metastasis and functions as a tumor-suppressive microRNA in metastatic CRC. The miR-99b-5p-mTOR axis may serve as a prognostic factor and therapeutic target for anti-metastatic therapy in CRC patients.


Characteristics and Prognostic Significance of Preoperative Magnetic Resonance Imaging-Assessed Circumferential Margin in Rectal Cancer.

  • Xiaoji Ma‎ et al.
  • Gastroenterology research and practice‎
  • 2015‎

Purpose. To study the characteristics and prognostic significance of preoperative magnetic resonance imaging- (MRI-) assessed circumferential margin (CRM) in rectal cancer. Methods. Patients underwent preoperative high resolution pelvic MRI, followed by resection of primary tumor. The relationship between MRI-assessed CRM and pathological CRM (pCRM) was studied, and survival analysis was used to determine the prognostic significance of MRI-assessed CRM. Results. Of all the 203 patients, the total accuracy of MRI-assessed CRM for predicting involvement of pCRM was 84.2%, sensitivity was 50%, and specificity was 86.8%. Anterior tumors were more possible to assess involvement of CRM by MRI, while the false positive rate was significantly higher than lateral or posterior tumor (87.5% versus 50%, p = 0.0002). The 3-year local recurrence, disease-free survival, and overall survival rates were 35.6%, 58.1%, and 85.2% in patients with involved mrCRM, compared with 8.9%, 78.9%, and 92.3% in patients with clear mrCRM. In multivariate analysis, MRI-assessed CRM found an independent risk factor for local recurrence, with a hazard ratio of 3.49 (p = 0.003). Conclusions. High resolution MRI was accurate to assess CRM preoperatively, while anterior tumor should be assessed more cautiously. Involvement of mrCRM was significantly associated with local recurrence regardless of pCRM status.


Ramipril can alleviate the accumulation of renal mesangial matrix in rats with diabetic nephropathy by inhibiting insulin-like growth factor-1.

  • Wei Ren‎ et al.
  • Acta cirurgica brasileira‎
  • 2019‎

To investigate the impact of Ramipril (RAM) on the expressions of insulin-like growth factor-1 (IGF-1) and renal mesangial matrix (RMM) in rats with diabetic nephropathy (DN).


Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates.

  • Ling Shen‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Tuberculosis (TB) remains a leading killer among infectious diseases, and a better TB vaccine is urgently needed. The critical components and mechanisms of vaccine-induced protection against Mycobacterium tuberculosis (Mtb) remain incompletely defined. Our previous studies demonstrate that Vγ2Vδ2 T cells specific for (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen are unique in primates as multifunctional effectors of immune protection against TB infection. Here, we selectively immunized Vγ2Vδ2 T cells and assessed the effect on infection in a rhesus TB model. A single respiratory vaccination of macaques with an HMBPP-producing attenuated Listeria monocytogenes (Lm ΔactA prfA*) caused prolonged expansion of HMBPP-specific Vγ2Vδ2 T cells in circulating and pulmonary compartments. This did not occur in animals similarly immunized with an Lm ΔgcpE strain, which did not produce HMBPP. Lm ΔactA prfA* vaccination elicited increases in Th1-like Vγ2Vδ2 T cells in the airway, and induced containment of TB infection after pulmonary challenge. The selective immunization of Vγ2Vδ2 T cells reduced lung pathology and mycobacterial dissemination to extrapulmonary organs. Vaccine effects coincided with the fast-acting memory-like response of Th1-like Vγ2Vδ2 T cells and tissue-resident Vγ2Vδ2 effector T cells that produced both IFN-γ and perforin and inhibited intracellular Mtb growth. Furthermore, selective immunization of Vγ2Vδ2 T cells enabled CD4+ and CD8+ T cells to mount earlier pulmonary Th1 responses to TB challenge. Our findings show that selective immunization of Vγ2Vδ2 T cells can elicit fast-acting and durable memory-like responses that amplify responses of other T cell subsets, and provide an approach to creating more effective TB vaccines.


Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.

  • Ken Y Lin‎ et al.
  • Methods in molecular biology (Clifton, N.J.)‎
  • 2018‎

ADP-ribosylation is a covalent posttranslational modification of proteins that is catalyzed by various types of ADP-ribosyltransferase (ART) enzymes, including members of the poly(ADP-ribose) polymerase (PARP) family. ADP-ribose (ADPR) modifications can occur as mono(ADP-ribosyl)ation, oligo(ADP-ribosyl)ation, or poly(ADP-ribosyl)ation, depending on the particular ART enzyme catalyzing the reaction, as well as the specific reaction conditions. Understanding the biology of ADP-ribosylation requires facile and robust means of generating and detecting the modification in all of its forms. Here we describe how to generate protein-linked mono(ADP-ribose), oligo(ADP-ribose), and poly(ADP-ribose) (MAR, OAR, and PAR, respectively) in vitro as an automodification of PARPs 1 or 3. First, epitope-tagged PARP-1 (a PARP polyenzyme) and PARP-3 (a PARP monoenzyme) are expressed individually in insect cells using baculovirus expression vectors, and purified using immunoaffinity chromatography. Second, the purified recombinant PARPs are incubated individually in the presence of different concentrations of NAD+ (as a donor of ADPR groups) and sheared DNA (to activate their catalytic activities) resulting in various forms of auto-ADP-ribosylation. Third, the products are confirmed using ADPR detection reagents that can distinguish among MAR, OAR, and PAR. Finally, if desired, the OAR and PAR can be deproteinized. The protein-linked and free MAR, OAR, and PAR generated in these reactions can be used as standards, substrates, or binding partners in a variety of ADPR-related assays.


Poly(ADP-ribosyl)ated PXR is a critical regulator of acetaminophen-induced hepatotoxicity.

  • Cheng Wang‎ et al.
  • Cell death & disease‎
  • 2018‎

Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure and remains a critical problem in medicine. PARP1-dependent poly(ADPribosyl)ation is a key mediator of cellular stress responses and functions in multiple physiological and pathological processes. However, whether it is involved in the process of APAP metabolism remains elusive. In this study, we find that PARP1 is activated in mouse livers after APAP overdose. Pharmacological or genetic manipulations of PARP1 are sufficient to suppress the APAP-induced hepatic toxicity and injury, as well as reduced APAP metabolism. Mechanistically, we identify pregnane X receptor (PXR) as a substrate of PARP1-mediated poly(ADP-ribosyl)ation. The poly(ADP-ribosyl)ation of PXR in ligand-binding domain activates PXR competitively and solidly, facilitates its recruitment to target gene CYP3A11 promoter, and promotes CYP3A11 gene transcription, thus resulting in increases of APAP pro-toxic metabolism. Additionally, PXR silence antagonizes the effects of PARP1 on APAP-induced hepatotoxicity. These results identifies poly(ADP-ribosyl)ation of PXR by PARP1 as a key step in APAP-induced liver injury. We propose that inhibition of PARP1-dependent poly(ADP-ribosyl)ation might represent a novel approach for the treatment of drug-induced hepatotoxicity.


Effects of morphine withdrawal on the membrane properties of medium spiny neurons in the nucleus accumbens shell.

  • Xiaobo Wu‎ et al.
  • Brain research bulletin‎
  • 2013‎

Medium spiny neurons (MSNs) in the nucleus accumbens (NAc) undergo persistent alterations in their biological and physiological characteristics upon exposure to drugs of abuse. Previous studies demonstrated that the biochemical, morphological, and intrinsic physiological properties of MSNs are heterogeneous and provided new insights into the physiological and molecular roles of individual MSNs in addictive behaviors. However, it remains unclear whether MSNs in the NAc shell (NAcSh), an important region for mediating behavioral sensitization, are electrophysiologically heterogeneous and how such heterogeneity is relevant to neuroadaptation associated with drug addiction. Here, the membrane properties, i.e., the intrinsic excitability and spike adaptation, of MSNs in the NAcSh from saline- or morphine-treated rats were investigated in vitro by whole-cell recording. In saline-treated rats, three distinct cell types were identified by their membrane properties: type I neurons showed high levels of intrinsic excitability and rapid spike adaptation; type II neurons showed moderate levels of intrinsic excitability and relatively slow spike frequency adaptation; type III neurons showed low levels of intrinsic excitability and putative strong spike adaptation. MSNs in rats undergoing withdrawal from chronic morphine treatment (10-14 days after the last injection) also exhibited the typical firing behaviors of these three types of neurons. However, the membrane properties of the MSNs were differentially altered after withdrawal. There was an enhancement in intrinsic excitability in type II MSNs and a promotion of spike adaptation in type I MSNs. The apamin-sensitive afterhyperpolarization current (I(AHP)) and the apamin-insensitive I(AHP) of the NAcSh MSNs were attenuated after chronic morphine withdrawal. These findings suggest that individual MSNs in the NAcSh manifest unique electrophysiological properties, which might contribute to psychostimulant-induced neuroadaptation.


RNA sequencing reveals upregulation of RUNX1-RUNX1T1 gene signatures in clear cell renal cell carcinoma.

  • Zuquan Xiong‎ et al.
  • BioMed research international‎
  • 2014‎

In the past few years, therapies targeted at the von Hippel-Lindau (VHL) and hypoxia-inducible factor (HIF) pathways, such as sunitinib and sorafenib, have been developed to treat clear cell renal cell carcinoma (ccRCC). However, the majority of patients will eventually show resistance to antiangiogenesis therapies. The purpose of our study was to identify novel pathways that could be potentially used as targets for new therapies. Whole transcriptome sequencing (RNA-Seq) was conducted on eight matched tumor and adjacent normal tissue samples. A novel RUNX1-RUNX1T1 pathway was identified which was upregulated in ccRCC through gene set enrichment analysis (GSEA). We also confirmed the findings based on previously published gene expression microarray data. Our data shows that upregulated of the RUNX1-RUNX1T1 gene set maybe an important factor contributing to the etiology of ccRCC.


PTTG3P promotes gastric tumour cell proliferation and invasion and is an indicator of poor prognosis.

  • Weiwei Weng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

Pseudogenes play a crucial role in cancer progression. However, the role of pituitary tumour-transforming 3, pseudogene (PTTG3P) in gastric cancer (GC) remains unknown. Here, we showed that PTTG3P expression was abnormally up-regulated in GC tissues compared with that in normal tissues both in our 198 cases of clinical samples and the cohort from The Cancer Genome Atlas (TCGA) database. High PTTG3P expression was correlated with increased tumour size and enhanced tumour invasiveness and served as an independent negative prognostic predictor. Moreover, up-regulation of PTTG3P in GC cells stimulated cell proliferation, migration and invasion both in vitro in cell experiments and in vivo in nude mouse models, and the pseudogene functioned independently of its parent genes. Overall, these results reveal that PTTG3P is a novel prognostic biomarker with independent oncogenic functions in GC.


Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins.

  • Bryan A Gibson‎ et al.
  • Biochemistry‎
  • 2017‎

ADP-ribosylation is an enzyme-catalyzed post-translational modification of proteins in which the ADP-ribose (ADPR) moiety of NAD+ is transferred to a specific amino acid in a substrate protein. The biological functions of ADP-ribosylation are numerous and diverse, ranging from normal physiology to pathological conditions. Biochemical and cellular studies of the diverse forms and functions of ADPR require immunological reagents that can be used for detection and enrichment. The lack of a complete set of tools that recognize all forms of ADPR [i.e., mono-, oligo-, and poly(ADP-ribose)] has hampered progress. Herein, we describe the generation and characterization of a set of recombinant antibody-like ADP-ribose binding proteins, in which naturally occurring ADPR binding domains, including macrodomains and WWE domains, have been functionalized by fusion to the Fc region of rabbit immunoglobulin. These reagents, which collectively recognize all forms of ADPR with different specificities, are useful in a broad array of antibody-based assays, such as immunoblotting, immunofluorescent staining of cells, and immunoprecipitation. Observations from these assays suggest that the biology of ADPR is more diverse, rich, and complex than previously thought. The ARBD-Fc fusion proteins described herein will be useful tools for future exploration of the chemistry, biochemistry, and biology of ADP-ribose.


An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma.

  • Wei Ren‎ et al.
  • Apoptosis : an international journal on programmed cell death‎
  • 2011‎

Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was >95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. Bid cleavage was caspase-dependent (55-60%) and calcium-dependent (40-45%). Intracellular calcium as an intrinsic mechanism and extracellular calcium as an extrinsic mechanism were responsible for about 30 and 70% of calcium dependence for Bid cleavage, respectively. The results reveal electric field-mediated cell death induction and progression, activating pro-apoptotic-like mechanisms and affecting plasma membrane and intracellular functions, primarily through extrinsic-like pathways with smaller contributions from intrinsic-like pathways. Nanosecond second pulsed electric fields trigger heterogeneous cell death mechanisms in E4 SCC populations to delete them, with caspase-associated cell death as a predominant, but not an unaccompanied event.


Geraniin protects bone marrow‑derived mesenchymal stem cells against hydrogen peroxide‑induced cellular oxidative stress in vitro.

  • Dan Huang‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

Administration of bone marrow‑derived mesenchymal stem cells (MSCs) has emerged as a potential therapeutic approach for the treatment of myocardial infarction (MI). However, the increase in reactive oxygen species (ROS) in ischemic cardiac tissue compromises the survival of transplanted MSCs, thus resulting in limited therapeutic efficiency. Therefore, strategies that attenuate oxidative stress‑induced damage and enhance MSC viability are required. Geraniin has been reported to possess potent antioxidative activity and exert protective effects on numerous cell types under certain conditions. Therefore, geraniin may be considered a potential drug used to modulate MSC‑based therapy for MI. In the present study, MSCs were pretreated with geraniin for 24 h and were exposed to hydrogen peroxide (H2O2) for 4 h. Cell apoptosis, intracellular ROS levels and mitochondrial membrane potential were measured using Annexin V‑fluorescein isothiocyanate/propidium iodide staining, the 2',7'‑dichlorodihydrofluorescein diacetate fluorescent probe and the membrane permeable dye JC‑1, respectively. Glutathione and malondialdehyde levels were also investigated. The expression levels of apoptosis‑associated proteins and proteins of the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway were analyzed by western blotting. The results demonstrated that geraniin could significantly attenuate H2O2‑induced cell damage by promoting MSC survival, reducing cellular ROS production and maintaining mitochondrial function. Furthermore, geraniin modulated the expression levels of phosphorylated‑Akt in a time‑ and dose‑dependent manner. The cytoprotective effects of geraniin were suppressed by LY294002, a specific PI3K inhibitor. In conclusion, the present study revealed that geraniin protects MSCs from H2O2‑induced oxidative stress injury via the PI3K/Akt pathway. These findings indicated that cotreatment of MSCs with geraniin may optimize therapeutic efficacy for the clinical treatment of MI.


Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task.

  • Linyan Xue‎ et al.
  • Scientific reports‎
  • 2017‎

Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.


A complex microsatellite at chromosome 7q33 as a new prognostic marker of colorectal cancer.

  • Xu Ye‎ et al.
  • Oncotarget‎
  • 2017‎

Disease-specific markers are critical for early diagnosis, targeted therapy and prognostic prediction of diseases. Current study reports a complex microsatellite as a new prognostic marker of sporadic colorectal cancer. This microsatellite located at Chromosome 7q33 is composed of three tetranucleotide tandem repeats, (TTCC)2(TCCC)5(TCCT)7, flanked by a CT-rich sequence. We analyzed polymorphisms of this microsatellite in 158 sporadic colorectal cancer, 143 matched normal adjacent tissues (NAT) and 150 health donors. Our results showed that this complex microsatellite was instable with polymorphic frequency of 77.2% in colorectal cancer, 52.4% in NAT and 54.7% in health donors (p<0.01) when compared to reference sequence. In the three tandem repeats, (TCCT)7 site was most polymorphic accounting for over 70.0% of polymorphisms in this complex microsatellite, followed by (TTCC)2 site for approximately 20%. Polymorphisms in (TCCC)5 was rare. Polymorphisms at the (TCCT)7 site were mainly insertions of 1 to 4 copies of TCCT (88.6%), and deletions occurred in about 6.4% of cases. The (TTCC)2 site was featured with one copy TTCC insertions. Pair-wise analyses between colorectal tumors and NAT revealed that 88 of 121 (72.7%) tumors displayed expansion, contraction or both in these tetranucleotide tandem repeats when compared to NAT. A cross-analysis with clinicopathological data of 158 colorectal cancers revealed that polymorphic alterations of the microsatellite associated with less lymphatic metastasis (p<0.001), and the colorectal cancer patients with polymorphic changes in this microsatellite demonstrated better survival (n=112, p=0.0058). Together these data suggest that this complex microsatellite is a potential prognostic marker of sporadic colorectal cancer.


Isomalto-oligosaccharides ameliorate visceral hyperalgesia with repair damage of ileal epithelial ultrastructure in rats.

  • Weida Wang‎ et al.
  • PloS one‎
  • 2017‎

Treatment of irritable bowel syndrome (IBS) with probiotics has achieved effectiveness to a certain extent. Whether prebiotics will work is still unclear. This study aimed to investigate the therapeutic effects of the prebiotic isomalto-oligosaccharides (IMO) on visceral hypersensitivity (VHS) in rats and to explore potential mechanism.


A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic.

  • Ting Zhong‎ et al.
  • Scientific reports‎
  • 2016‎

The main objective of this study was to demonstrate the proof-of-principle for the hypothesis that conjugated linoleic acid-paclitaxel conjugate (CLA-PTX), a novel fatty acid modified anti-cancer drug conjugate, could self-assemble forming nanoparticles. The results indicated that a novel self-assembling nanomedicine, CLA-PTX@PEG NPs (about 105 nm), with Cremophor EL (CrEL)-free and organic solvent-free characteristics, was prepared by a simple precipitation method. Being the ratio of CLA-PTX:DSPE-PEG was only 1:0.1 (w/w), the higher drug loading CLA-PTX@PEG NPs (about 90%) possessed carrier-free characteristic. The stability results indicated that CLA-PTX@PEG NPs could be stored for at least 9 months. The safety of CLA-PTX@PEG NPs was demonstrated by the MTD results. The anti-tumor activity and cellular uptake were also confirmed in the in vitro experiments. The lower crystallinity, polarity and solubility of CLA-PTX compared with that of paclitaxel (PTX) might be the possible reason for CLA-PTX self-assembling forming nanoparticles, indicating a relationship between PTX modification and nanoparticles self-assembly. Overall, the data presented here confirm that this drug self-delivery strategy based on self-assembly of a CLA-PTX conjugate may offer a new way to prepare nanomedicine products for cancer therapy involving the relationship between anticancer drug modification and self-assembly into nanoparticles.


Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II.

  • Zhiyong Wu‎ et al.
  • Mediators of inflammation‎
  • 2016‎

Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P < 0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement.


Differential microRNA expression profiling in primary tumors and matched liver metastasis of patients with colorectal cancer.

  • Wenhua Li‎ et al.
  • Oncotarget‎
  • 2017‎

Liver metastasis is common in patients with colorectal cancer (CRC), and is correlated with poor outcome. MicroRNAs (miRNAs) are small non-coding RNAs involved in cancer development and progression, but their role in CRC liver metastasis has not been extensively investigated.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: