Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia.

  • A R Sehgal‎ et al.
  • Leukemia‎
  • 2015‎

A deeper understanding of the role of autophagy, literally 'self-eating', in normal and cancer cell biology has emerged over the last few years. Autophagy serves as a vehicle for cells to respond to various stressors including genomic, hypoxic and nutrient stress, and to oppose mechanisms of 'programmed' cell death. Here, we review not only mechanisms of cell death and cell survival but also the early successes in applying autophagy inhibition strategies in solid tumors using the only currently available clinical inhibitor, oral hydroxychloroquine. In acute leukemia, currently available chemotherapy drugs promote cell death and demonstrate clinical benefit, but relapse and subsequent chemotherapy resistance is common. Increasing preclinical data suggest that autophagy is active in leukemia as a means of promoting cell survival in response to chemotherapy. We propose coupling autophagy inhibition strategies with current cytotoxic chemotherapy and discuss synergistic combinations of available anti-leukemic therapies with autophagy inhibition. Furthermore, novel autophagy inhibitors are in development and promise to provide new therapeutic opportunities for patients with leukemia.


The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer.

  • B A Boone‎ et al.
  • Cancer gene therapy‎
  • 2015‎

Neutrophil extracellular traps (NETs) are formed when neutrophils expel their DNA, histones and intracellular proteins into the extracellular space or circulation. NET formation is dependent on autophagy and is mediated by citrullination of histones to allow for the unwinding and subsequent expulsion of DNA. NETs have an important role in the pathogenesis of several sterile inflammatory diseases, including malignancy, therefore we investigated the role of NETs in the setting of pancreatic ductal adenocarcinoma (PDA). Neutrophils isolated from two distinct animal models of PDA had an increased propensity to form NETs following stimulation with platelet activating factor (PAF). Serum DNA, a marker of circulating NET formation, was elevated in tumor bearing animals as well as in patients with PDA. Citrullinated histone H3 expression, a marker of NET formation, was observed in pancreatic tumors obtained from murine models and patients with PDA. Inhibition of autophagy with chloroquine or genetic ablation of receptor for advanced glycation end products (RAGE) resulted in decreased propensity for NET formation, decreased serum DNA and decreased citrullinated histone H3 expression in the pancreatic tumor microenvironment. We conclude that NETs are upregulated in pancreatic cancer through RAGE-dependent/autophagy mediated pathways.


Extracellular signal-regulated kinases modulate DNA damage response - a contributing factor to using MEK inhibitors in cancer therapy.

  • F Wei‎ et al.
  • Current medicinal chemistry‎
  • 2011‎

The Raf-MEK-ERK pathway is commonly activated in human cancers, largely attributable to the extracellular signal-regulated kinases (ERKs) being a common downstream target of growth factor receptors, Ras, and Raf. Elevation of these up-stream signals occurs frequently in a variety of malignancies and ERK kinases play critical roles in promoting cell proliferation. Therefore, inhibition of MEK-mediated ERK activation is very appealing in cancer therapy. Consequently, numerous MEK inhibitors have been developed over the years. However, clinical trials have yet to produce overwhelming support for using MEK inhibitors in cancer therapy. Although complex reasons may have contributed to this outcome, an alternative possibility is that the MEK-ERK pathway may not solely provide proliferation signals to malignancies, the central scientific rationale in developing MEK inhibitors for cancer therapy. Recent developments may support this alternative possibility. Accumulating evidence now demonstrated that the MEK-ERK pathway contributes to the proper execution of cellular DNA damage response (DDR), a major pathway of tumor suppression. During DDR, the MEK-ERK pathway is commonly activated, which facilitates the proper activation of DDR checkpoints to prevent cell division. Inhibition of MEK-mediated ERK activation, therefore, compromises checkpoint activation. As a result, cells may continue to proliferate in the presence of DNA lesions, leading to the accumulation of mutations and thereby promoting tumorigenesis. Alternatively, reduction in checkpoint activation may prevent efficient repair of DNA damages, which may cause apoptosis or cell catastrophe, thereby enhancing chemotherapy's efficacy. This review summarizes our current understanding of the participation of the ERK kinases in DDR.


RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer.

  • R Kang‎ et al.
  • Cell death & disease‎
  • 2014‎

A hypoxic tumor microenvironment is characteristic of many cancer types, including one of the most lethal, pancreatic cancer. We recently demonstrated that the receptor for advanced glycation end products (RAGE) has an important role in promoting the development of pancreatic cancer and attenuating the response to chemotherapy. We now demonstrate that binding of RAGE to oncogenic KRAS facilitates hypoxia-inducible factor 1 (HIF1)α activation and promotes pancreatic tumor growth under hypoxic conditions. Hypoxia induces NF-κB-dependent and HIF1α-independent RAGE expression in pancreatic tumor cells. Moreover, the interaction between RAGE and mutant KRAS increases under hypoxia, which in turn sustains KRAS signaling pathways (RAF-MEK-ERK and PI3K-AKT), facilitating stabilization and transcriptional activity of HIF1α. Knock down of RAGE in vitro inhibits KRAS signaling, promotes HIF1α degradation, and increases hypoxia-induced pancreatic tumor cell death. RAGE-deficient mice have impaired oncogenic KRAS-driven pancreatic tumor growth with significant downregulation of the HIF1α signaling pathway. Our results provide a novel mechanistic link between NF-κB, KRAS, and HIF1α, three potent molecular pathways in the cellular response to hypoxia during pancreatic tumor development and suggest alternatives for preventive and therapeutic strategies.


The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus.

  • J E Strong‎ et al.
  • The EMBO journal‎
  • 1998‎

NIH-3T3 cells, which are resistant to reovirus infection, became susceptible when transformed with activated Sos or Ras. Restriction of reovirus proliferation in untransformed NIH-3T3 cells was not at the level of viral gene transcription, but rather at the level of viral protein synthesis. An analysis of cell lysates revealed that a 65 kDa protein was phosphorylated in untransformed NIH-3T3 cells, but only after infection with reovirus. This protein was not phosphorylated in infected or uninfected transformed cells. The 65 kDa protein was determined to be the double-stranded RNA-activated protein kinase (PKR), whose phosphorylation leads to translation inhibition. Inhibition of PKR phosphorylation by 2-aminopurine, or deletion of the Pkr gene, led to drastic enhancement of reovirus protein synthesis in untransformed cells. The emerging picture is one in which early viral transcripts trigger PKR phosphorylation in untransformed cells, which in turn leads to inhibition of translation of viral genes; this phosphorylation event is blocked by an element(s) in the Ras pathway in the transformed cells, allowing viral protein synthesis to ensue. The usurpation of the Ras signaling pathway therefore constitutes the basis of reovirus oncolysis.


Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer.

  • X Song‎ et al.
  • Cell death & disease‎
  • 2014‎

Unresectable colorectal liver metastases remain a major unresolved issue and more effective novel regimens are urgently needed. While screening synergistic drug combinations for colon cancer therapy, we identified a novel multidrug treatment for colon cancer: chemotherapeutic agent melphalan in combination with proteasome inhibitor bortezomib and mTOR (mammalian target of rapamycin) inhibitor rapamycin. We investigated the mechanisms of synergistic antitumor efficacy during the multidrug treatment. All experiments were performed with highly metastatic human colon cancer CX-1 and HCT116 cells, and selected critical experiments were repeated with human colon cancer stem Tu-22 cells and mouse embryo fibroblast (MEF) cells. We used immunochemical techniques to investigate a cross-talk between apoptosis and autophagy during the multidrug treatment. We observed that melphalan triggered apoptosis, bortezomib induced apoptosis and autophagy, rapamycin caused autophagy and the combinatorial treatment-induced synergistic apoptosis, which was mediated through an increase in caspase activation. We also observed that mitochondrial dysfunction induced by the combination was linked with altered cellular metabolism, which induced adenosine monophosphate-activated protein kinase (AMPK) activation, resulting in Beclin-1 phosphorylated at Ser 93/96. Interestingly, Beclin-1 phosphorylated at Ser 93/96 is sufficient to induce Beclin-1 cleavage by caspase-8, which switches off autophagy to achieve the synergistic induction of apoptosis. Similar results were observed with the essential autophagy gene, autophagy-related protein 7, -deficient MEF cells. The multidrug treatment-induced Beclin-1 cleavage was abolished in Beclin-1 double-mutant (D133A/D146A) knock-in HCT116 cells, restoring the autophagy-promoting function of Beclin-1 and suppressing the apoptosis induced by the combination therapy. These observations identify a novel mechanism for AMPK-induced apoptosis through interplay between autophagy and apoptosis.


Assessment of Posttranslational Modifications of ATG proteins.

  • Y Xie‎ et al.
  • Methods in enzymology‎
  • 2017‎

Posttranslational modifications (PTMs) increase the functional diversity of proteins and play a key role in many cellular processes. Macroautophagy (hereafter simply referred to as autophagy) is an evolutionarily conserved, lysosome-dependent degradation pathway. This process is finely regulated by autophagy-related (ATG) genes widely conserved among eukaryotes from yeast to mammals. Various PTMs of ATG proteins such as phosphorylation, ubiquitination, and acetylation have been theorized to play a critical role in modulating autophagic processes and activity. In this chapter, we introduce several antibody-based tools (e.g., Western blot, Simple Western™, immunofluorescence, and immunoprecipitation) that are widely used to assess the PTMs of ATG proteins in mammalian cells.


Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis.

  • J Yan‎ et al.
  • British journal of cancer‎
  • 2014‎

Accumulating evidence demonstrates high levels of aldehyde dehydrogense (ALDH) activity in human cancer types, in part, because of its association with cancer stem cells. Whereas ALDH1A1 and ALDH7A1 isoforms were reported to associate with prostate tumorigenesis, whether other ALDH isoforms are associated with prostate cancer (PC) remains unclear.


Melanoma secretion of transforming growth factor-β2 leads to loss of epidermal AMBRA1 threatening epidermal integrity and facilitating tumour ulceration.

  • I Cosgarea‎ et al.
  • The British journal of dermatology‎
  • 2022‎

For patients with early American Joint Committee on Cancer (AJCC)-stage melanoma the combined loss of the autophagy regulatory protein AMBRA1 and the terminal differentiation marker loricrin in the peritumoral epidermis is associated with a significantly increased risk of metastasis.


HSPB1 as a novel regulator of ferroptotic cancer cell death.

  • X Sun‎ et al.
  • Oncogene‎
  • 2015‎

Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1-HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.


The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival.

  • R Kang‎ et al.
  • Cell death and differentiation‎
  • 2010‎

Activation of the induced receptor for advanced glycation end products (RAGE) leads to initiation of NF-kappaB and MAP kinase signaling pathways, resulting in propagation and perpetuation of inflammation. RAGE-knockout animals are less susceptible to acute inflammation and carcinogen-induced tumor development. We have reported that most forms of tumor cell death result in release of the RAGE ligand, high-mobility group protein 1 (HMGB1). We now report a novel role for RAGE in the tumor cell response to stress. Targeted knockdown of RAGE in the tumor cell, leads to increased apoptosis, diminished autophagy and decreased tumor cell survival . In contrast, overexpression of RAGE is associated with enhanced autophagy, diminished apoptosis and greater tumor cell viability. RAGE limits apoptosis through a p53-dependent mitochondrial pathway. Moreover, RAGE-sustained autophagy is associated with decreased phosphorylation of mammalian target of rapamycin (mTOR) and increased Beclin-1/VPS34 autophagosome formation. These findings show that the inflammatory receptor, RAGE, has a heretofore unrecognized role in the tumor cell response to stress. Furthermore, these studies establish a direct link between inflammatory mediators in the tumor microenvironment and resistance to programmed cell death. Our data suggest that targeted inhibition of RAGE or its ligands may serve as novel targets to enhance current cancer therapies.


HMGB1 release and redox regulates autophagy and apoptosis in cancer cells.

  • D Tang‎ et al.
  • Oncogene‎
  • 2010‎

The functional relationship and cross-regulation between autophagy and apoptosis is complex. In this study we show that the high-mobility group box 1 protein (HMGB1) is a redox-sensitive regulator of the balance between autophagy and apoptosis. In cancer cells, anticancer agents enhanced autophagy and apoptosis, as well as HMGB1 release. HMGB1 release may be a prosurvival signal for residual cells after various cytotoxic cancer treatments. Diminished HMGB1 by short hairpin RNA transfection or inhibition of HMGB1 release by ethyl pyruvate or other small molecules led predominantly to apoptosis and decreased autophagy in stressed cancer cells. In this setting, reducible HMGB1 binds to the receptor for advanced glycation end products (RAGEs), but not to Toll-like receptor 4, induces Beclin1-dependent autophagy and promotes tumor resistance to alkylators (melphalan), tubulin disrupting agents (paclitaxel), DNA crosslinkers (ultraviolet light) and DNA intercalators (oxaliplatin or adriamycin). On the contrary, oxidized HMGB1 increases the cytotoxicity of these agents and induces apoptosis mediated by the caspase-9/-3 intrinsic pathway. HMGB1 release, as well as its redox state, thus links autophagy and apoptosis, representing a suitable target when coupled with conventional tumor treatments.


Concurrent working memory task decreases the Stroop interference effect as indexed by the decreased theta oscillations.

  • Y Zhao‎ et al.
  • Neuroscience‎
  • 2014‎

Working memory (WM) tasks may increase or decrease the interference effect of concurrently performed cognitive control tasks. However, the neural oscillatory correlates of this modulation effect of WM on the Stroop task are still largely unknown. In the present study, behavioral and electroencephalographic (EEG) data were recorded from 32 healthy participants during their performance of the single Stroop task and the same task with a concurrent WM task. We observed that the Stroop interference effect represented in both response times (RTs) and theta-band event-related spectral perturbation (ERSP) magnitude reduced under the dual-task condition compared with the single-task condition. The reduction of interference in theta-band ERSP was further positively correlated with interference reduction in RTs, and was mainly explained by the source in the left middle frontal gyrus. In conclusion, the present study suggests that the effect of concurrent WM tasks on the reduction of the Stroop interference effect can be indexed by EEG oscillations in theta-band rhythm in the centro-frontal regions and this modulation was mediated by the reduced cognitive control under the concurrent WM task.


Plasma biosignature and brain pathology related to persistent cognitive impairment in late-life depression.

  • B S Diniz‎ et al.
  • Molecular psychiatry‎
  • 2015‎

Cognitive impairment is highly prevalent among individuals with late-life depression (LLD) and tends to persist even after successful treatment. The biological mechanisms underlying cognitive impairment in LLD are complex and likely involve abnormalities in multiple pathways, or 'cascades,' reflected in specific biomarkers. Our aim was to evaluate peripheral (blood-based) evidence for biological pathways associated with cognitive impairment in older adults with LLD. To this end, we used a data-driven comprehensive proteomic analysis (multiplex immunoassay including 242 proteins), along with measures of structural brain abnormalities (gray matter atrophy and white matter hyperintensity volume via magnetic resonance imaging), and brain amyloid-β (Aβ) deposition (PiB-positron emission tomography). We analyzed data from 80 older adults with remitted major depression (36 with mild cognitive impairment (LLD+MCI) and 44 with normal cognitive (LLD+NC)) function. LLD+MCI was associated with differential expression of 24 proteins (P<0.05 and q-value <0.30) related mainly to the regulation of immune-inflammatory activity, intracellular signaling, cell survival and protein and lipid homeostasis. Individuals with LLD+MCI also showed greater white matter hyperintensity burden compared with LLD+NC (P=0.015). We observed no differences in gray matter volume or brain Aβ deposition between groups. Machine learning analysis showed that a group of three proteins (Apo AI, IL-12 and stem cell factor) yielded accuracy of 81.3%, sensitivity of 75% and specificity of 86.4% in discriminating participants with MCI from those with NC function (with an averaged cross-validation accuracy of 76.3%, sensitivity of 69.4% and specificity of 81.8% with nested cross-validation considering the model selection bias). Cognitive impairment in LLD seems to be related to greater cerebrovascular disease along with abnormalities in immune-inflammatory control, cell survival, intracellular signaling, protein and lipid homeostasis, and clotting processes. These results suggest that individuals with LLD and cognitive impairment may be more vulnerable to accelerated brain aging and shed light on possible mediators of their elevated risk for progression to dementia.


Induction of the cholesterol metabolic pathway regulates the farnesylation of RAS in embryonic chick heart cells: a new role for ras in regulating the expression of muscarinic receptors and G proteins.

  • A P Gadbut‎ et al.
  • The EMBO journal‎
  • 1997‎

We propose a novel mechanism for the regulation of the processing of Ras and demonstrate a new function for Ras in regulating the expression of cardiac autonomic receptors and their associated G proteins. We have demonstrated previously that induction of endogenous cholesterol synthesis in cultured cardiac myocytes resulted in a coordinated increase in expression of muscarinic receptors, the G protein alpha-subunit, G-alphai2, and the inward rectifying K+ channel, GIRK1. These changes in gene expression were associated with a marked increase in the response of heart cells to parasympathetic stimulation. In this study, we demonstrate that the induction of the cholesterol metabolic pathway regulates Ras processing and that Ras regulates expression of G-alphai2. We show that in primary cultured myocytes most of the RAS is localized to the cytoplasm in an unfarnesylated form. Induction of the cholesterol metabolic pathway results in increased farnesylation and membrane association of RAS. Studies of Ras mutants expressed in cultured heart cells demonstrate that activation of Ras by induction of the cholesterol metabolic pathway results in increased expression of G-alphai2 mRNA. Hence farnesylation of Ras is a regulatable process that plays a novel role in the control of second messenger pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: