Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Characterization of the large deletion in the GALC gene found in patients with Krabbe disease.

  • P Luzi‎ et al.
  • Human molecular genetics‎
  • 1995‎

Globoid cell leukodystrophy (GLD) of Krabbe disease results from mutations in the galactocerebrosidase (GALC) gene. Previously, we had identified a large deletion in the GALC gene together with a C to T polymorphism at cDNA position 502 in a significant number of cases of infantile Krabbe disease; however, the deletion breakpoint had not been found. In this paper we show that the deletion is approximately 30 kb starting near the middle of the 12 kb intron 10, and includes all of the coding region through exon 17 plus an additional 9 kb. The deletion junction contains a 4 bp direct repeat and is preceded by sequence identified as belonging to the Alu family of interspersed repetitive elements. Using genomic DNA and a PCR-based test to detect normal and deleted sequences at that location, a large number of patients with all clinical types of GLD were analyzed. Of 21 infantile patients found to be heterozygous for the 502T polymorphism reported previously, 15 had the deletion, one could not tested and five, including a Hmong child, did not have the deletion. Sixteen other infantile patients previously tested were found to be either homozygous (10) or heterozygous (6) for the deletion. In addition, five patients with juvenile and adult GLD were found to be heterozygous for the deletion. In every case tested, the deletion was always found on the same allele as the 502T polymorphism. However, other disease-causing mutations have been found on the 502T allele. With careful genotype analysis these families can receive improved genetic information including patient and carrier identification and preimplantation diagnosis.


Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop.

  • G Millat‎ et al.
  • American journal of human genetics‎
  • 2001‎

To obtain more information of the functional domains of the NPC1 protein, the mutational spectrum and the level of immunoreactive protein were investigated in skin fibroblasts from 30 unrelated patients with Niemann-Pick C1 disease. Nine of them were characterized by mild alterations of cellular cholesterol transport (the "variant" biochemical phenotype). The mutations showed a wide distribution to nearly all NPC1 domains, with a cluster (11/32) in a conserved NPC1 cysteine-rich luminal loop. Homozygous mutations in 14 patients and a phenotypically defined allele, combined with a new mutation, in a further 10 patients allowed genotype/phenotype correlations. Premature-termination-codon mutations, the three missense mutations in the sterol-sensing domain (SSD), and A1054T in the cysteine-rich luminal loop all occurred in patients with infantile neurological onset and "classic" (severe) cholesterol-trafficking alterations. By western blot, NPC1 protein was undetectable in the SSD missense mutations studied (L724P and Q775P) and essentially was absent in the A1054T missense allele. Our results thus enhance the functional significance of the SSD and demonstrate a correlation between the absence of NPC1 protein and the most severe neurological form. In the remaining missense mutations studied, corresponding to other disease presentations (including two adults with nonneurological disease), NPC1 protein was present in significant amounts of normal size, without clear-cut correlation with either the clinical phenotype or the "classic"/"variant" biochemical phenotype. Missense mutations in the cysteine-rich luminal loop resulted in a wide array of clinical and biochemical phenotypes. Remarkably, all five mutant alleles (I943M, V950M, G986S, G992R, and the recurrent P1007A) definitively correlated with the "variant" phenotype clustered within this loop, providing new insight on the functional complexity of the latter domain.


GM2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB.

  • A Kolicheski‎ et al.
  • Journal of veterinary internal medicine‎
  • 2017‎

Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young-adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL-related variants were identified in a whole-genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole-genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3-bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin-layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3-bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole-genome sequencing can lead to the early identification of potentially disease-causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality.


Histochemical detection of GM1 ganglioside using cholera toxin-B subunit. Evaluation of critical factors optimal for in situ detection with special emphasis to acetone pre-extraction.

  • T Petr‎ et al.
  • European journal of histochemistry : EJH‎
  • 2010‎

A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit. Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at -20 degrees C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0 +/- 0.3% only. The loss from dried brain homogenate was 9.5 +/- 1.1%. Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier.


Prosaposin deficiency -- a rarely diagnosed, rapidly progressing, neonatal neurovisceral lipid storage disease. Report of a further patient.

  • M Elleder‎ et al.
  • Neuropediatrics‎
  • 2005‎

An infant presented with multifocal myoclonus and cyanotic hypoxemia immediately after birth, and severe feeding problems, a protein-losing enteropathy, massive ascites and grand-mal epilepsy marked his rapid downhill course, with death at 17 weeks. At 2 weeks, brain MRI revealed grey matter heterotopias in the parieto-occipital regions suggestive of a cortical morphogenetic disorder. In cultured skin fibroblasts, lipid storage and reduced activities of ceramidase, galactosylceramide beta-galactosidase and glucosylceramide beta-glucosidase were evident. Autopsy disclosed generalised lysosomal lipid storage with macrophages and adrenal cortex prominently affected. The pattern of stored lipids in cultured fibroblasts and in dewaxed spleen tissue blocks was compatible with a diagnosis of prosaposin (pSap) deficiency (pSap-d). Neuropathologically, there was a pronounced generalised neurolysosomal storage combined with a severe depletion of cortical neurons and extreme paucity of myelin and oligodendroglia. This pathology, in particular the massive neuronal loss, differed from that in other neurolipidoses and could be explained by the reduced hydrolysis of multiple sphingolipids and the loss of pSap's neurotrophic function. The absence of immunostainable saposins on tissue sections and the presence of a homozygous c.1 A > T mutation in the prosaposin gene confirmed the diagnosis. PSap-d may be an underdiagnosed condition in infants with severe neurological and dystrophic signs starting immediately after birth.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: