Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Differential Roles of the Two Raphe Nuclei in Amiable Social Behavior and Aggression - An Optogenetic Study.

  • Diána Balázsfi‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2018‎

Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex.


Increase in Alzheimer's related markers preceeds memory disturbances: studies in vasopressin-deficient Brattleboro rat.

  • János Varga‎ et al.
  • Brain research bulletin‎
  • 2014‎

Alzheimer's disease (AD) is the most common form of dementia in the elderly. For more effective therapy early diagnostic markers could be beneficial. Therefore we compared one year old rats with adults and examined if changes in possible brain markers of AD preceeded memory decline. We also tested if vasopressin-deficient animals were useful model of AD as vasopressin has well known positive effect on memory and AD patient has decreased vasopressin production. We compared adult (3 month) and old (12 month), normal and vasopressin-deficient Brattleboro rats. To receive a comprehensive picture about their memory we examined their social discrimination, object discrimination and conditioned learning abilities (shuttle box). Amyloid precursor protein (APP), mitogen-activated protein kinase 1 (MAPK1), β-actin and tryptophan 2,3-dioxygenase 2 (TDO2) mRNA levels was measured by quantitative PCR. There was no difference between the memory of adult and aged groups. The vasopressin-deficient rats at both ages showed a weaker performance in the course of social and object discrimination tests and a higher escape failure during the shuttle box experiment. The brain marker mRNAs of the elder animals were higher than the levels of the adults, but the absence of vasopressin had no influence on them. Thus, the one year old rats showed elevated levels of AD-related markers, but memory deficits were observable only in vasopressin deficient animals. Vasopressin does not seem to have pathogenic role in AD. Changes in the studied markers might predict later symptoms, although further studies are required for confirmation.


Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats.

  • Diána Balázsfi‎ et al.
  • Psychoneuroendocrinology‎
  • 2015‎

Beside its hormonal function in salt and water homeostasis, vasopressin released into distinct brain areas plays a crucial role in stress-related behavior resulting in the enhancement of an anxious/depressive-like state. We aimed to investigate whether correction of the peripheral symptoms of congenital absence of AVP also corrects the behavioral alterations in AVP-deficient Brattleboro rats. Wild type (WT) and vasopressin-deficient (KO) male Brattleboro rats were tested. Half of the KO animals were treated by desmopressin (V2-receptor agonist) via osmotic minipump (subcutaneous) to eliminate the peripheral symptoms of vasopressin-deficiency. Anxiety was studied by elevated plus maze (EPM), defensive withdrawal (DW) and marble burying (MB) tests, while depressive-like changes were monitored in forced swimming (FS) and anhedonia by sucrose preference test. Cell activity was examined in septum and amygdala by c-Fos immunohistochemistry after 10 min FS. KO rats spent more time in the open arm of the EPM, spent less time at the periphery of DW and showed less burying behavior in MB suggesting a reduced anxiety state. KO animals showed less floating behavior during FS revealing a less depressive phenotype. Desmopressin treatment compensated the peripheral effects of vasopressin-deficiency without a significant influence on the behavior. The FS-induced c-Fos immunoreactivity in the medial amygdala was different in WT and KO rats, with almost identical levels in KO and desmopressin treated animals. There were no differences in central and basolateral amygdala as well as in lateral septum. Our data confirmed the role of vasopressin in the development of affective disorders through central mechanisms. The involvement of the medial amygdala in the behavioral alterations of vasopressin deficient animals deserves further attention.


The role of vasopressin in diabetes mellitus-induced hypothalamo-pituitary-adrenal axis activation: studies in Brattleboro rats.

  • Dóra Zelena‎ et al.
  • Brain research bulletin‎
  • 2006‎

Chronic diabetes mellitus (DM) induces hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA). Our present study addresses the role of vasopressin (AVP) in maintaining adrenocortical responsiveness during DM. AVP-deficient mutant Brattleboro rats were used with heterozygous controls and the V2 agonist, desmopressin was infused to replace peripheral AVP. To induce DM the rats were injected by streptozotocin (STZ, 60 mg/ml/kg i.v.) and studied 2 weeks later. The acute stress stimulus was 60 min restraint. The signs of DM (the increase in water consumption and in blood glucose levels) were discovered in all rats. The diuretic effect of the lack of AVP was additional to the DM-induced osmotic diuresis. DM induced significant, chronic stress-like somatic changes on which AVP-deficiency had no effect and although desmopressin infusion normalized the water consumption and the body weight gain in AVP-deficient rats, it had no effect on DM-induced changes. The acute stress-induced plasma ACTH elevation was smaller in AVP-deficient or DM rats but these effects were not additive. Desmopressin did not normalize the decreased ACTH-elevation of AVP-deficient animals. The resting morning plasma corticosterone level was elevated both in DM and AVP-deficient rats without interaction. The restraint-induced corticosterone rise was influenced neither by the lack of AVP nor by DM and the basal and stress-induced prolactin levels were smaller in DM rats without any effect of AVP-deficiency. In conclusion, our data suggest that AVP does not play a crucial role in HPA axis regulation during DM-induced chronic stress. In contrast, the role of AVP seems to be more important during acute stress, however, it is restricted to the ACTH regulation. According to the water consumption data diabetes insipidus seems to be an additional risk factor for DM.


Differentiation-Dependent Motility-Responses of Developing Neural Progenitors to Optogenetic Stimulation.

  • Tímea Köhidi‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2017‎

During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134)-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2)-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor) stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms) in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.


A thalamo-preoptic pathway promotes social grooming in rodents.

  • Dávid Keller‎ et al.
  • Current biology : CB‎
  • 2022‎

Social touch is an essential component of communication. Little is known about the underlying pathways and mechanisms. Here, we discovered a novel neuronal pathway from the posterior intralaminar thalamic nucleus (PIL) to the medial preoptic area (MPOA) involved in the control of social grooming. We found that the neurons in the PIL and MPOA were naturally activated by physical contact between female rats and also by the chemogenetic stimulation of PIL neurons. The activity-dependent tagging of PIL neurons was performed in rats experiencing physical social contact. The chemogenetic activation of these neurons increased social grooming between familiar rats, as did the selective activation of the PIL-MPOA pathway. Neurons projecting from the PIL to the MPOA express the neuropeptide parathyroid hormone 2 (PTH2), and the central infusion of its receptor antagonist diminished social grooming. Finally, we showed a similarity in the anatomical organization of the PIL and the distribution of the PTH2 receptor in the MPOA between the rat and human brain. We propose that the discovered neuronal pathway facilitates physical contact with conspecifics.


The role of the GABAergic cells of the median raphe region in reinforcement-based learning.

  • Tiago Chaves‎ et al.
  • Scientific reports‎
  • 2024‎

Learning and memory are important in everyday life as well as in pathological conditions. The median raphe region (MRR) contributes to memory formation; however, its precise role and the neurotransmitters involved have yet to be elucidated. To address this issue, we stimulated the MRR neurons of mice by chemogenetic technique and studied them in the operant conditioning and active avoidance tests. The virus carrier infected a variety of neuron types including both GABAergic and glutamatergic ones. Behavior was not influenced by stimulation. We hypothesize that the lack of effect was due to opposing effects exerted via GABAergic and glutamatergic neurons. Therefore, next we used VGAT-Cre mice that allowed the specific manipulation of MRR-GABAergic neurons. The stimulation did not affect behavior in the learning phase of the operant conditioning task, but increased reward preference and total responses when operant contingencies were reversed. The enhanced responsiveness might be a proclivity to impulsive behavior. Stimulation facilitated learning in the active avoidance test but did not affect reversal learning in this paradigm. Our findings suggest that MRR-GABAergic neurons are involved in both learning and reversal learning, but the type of learning that is affected depends on the task.


Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes.

  • Attila Gy Jády‎ et al.
  • Stem cells and development‎
  • 2016‎

While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H(+) production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In "starving" neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons.


Isolation of radial glia-like neural stem cells from fetal and adult mouse forebrain via selective adhesion to a novel adhesive peptide-conjugate.

  • Károly Markó‎ et al.
  • PloS one‎
  • 2011‎

Preferential adhesion of neural stem cells to surfaces covered with a novel synthetic adhesive polypeptide (AK-cyclo[RGDfC]) provided a unique, rapid procedure for isolating radial glia-like cells from both fetal and adult rodent brain. Radial glia-like (RGl) neural stem/progenitor cells grew readily on the peptide-covered surfaces under serum-free culture conditions in the presence of EGF as the only growth factor supplement. Proliferating cells derived either from fetal (E 14.5) forebrain or from different regions of the adult brain maintained several radial glia-specific features including nestin, RC2 immunoreactivity and Pax6, Sox2, Blbp, Glast gene expression. Proliferating RGl cells were obtained also from non-neurogenic zones including the parenchyma of the adult cerebral cortex and dorsal midbrain. Continuous proliferation allowed isolating one-cell derived clones of radial glia-like cells. All clones generated neurons, astrocytes and oligodendrocytes under appropriate inducing conditions. Electrophysiological characterization indicated that passive conductance with large delayed rectifying potassium current might be a uniform feature of non-induced radial glia-like cells. Upon induction, all clones gave rise to GABAergic neurons. Significant differences were found, however, among the clones in the generation of glutamatergic and cathecolamine-synthesizing neurons and in the production of oligodendrocytes.


The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice.

  • Cecilia Csölle‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2013‎

The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7(+/+)) and P2rx7-deficient (P2rx7(-/-)) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7(-/-) mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7(+/+) but not P2rx7(-/-) mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.


Colocalized neurotransmitters in the hindbrain cooperate in adaptation to chronic hypernatremia.

  • Rita Matuska‎ et al.
  • Brain structure & function‎
  • 2020‎

Chronic hypernatremia activates the central osmoregulatory mechanisms and inhibits the function of the hypothalamic-pituitary-adrenal (HPA) axis. Noradrenaline (NE) release into the periventricular anteroventral third ventricle region (AV3V), the supraoptic (SON) and hypothalamic paraventricular nuclei (PVN) from efferents of the caudal ventrolateral (cVLM) and dorsomedial (cDMM) medulla has been shown to be essential for the hypernatremia-evoked responses and for the HPA response to acute restraint. Notably, the medullary NE cell groups highly coexpress prolactin-releasing peptide (PrRP) and nesfatin-1/NUCB2 (nesfatin), therefore, we assumed they contributed to the reactions to chronic hypernatremia. To investigate this, we compared two models: homozygous Brattleboro rats with hereditary diabetes insipidus (DI) and Wistar rats subjected to chronic high salt solution (HS) intake. HS rats had higher plasma osmolality than DI rats. PrRP and nesfatin mRNA levels were higher in both models, in both medullary regions compared to controls. Elevated basal tyrosine hydroxylase (TH) expression and impaired restraint-induced TH, PrRP and nesfatin expression elevations in the cVLM were, however, detected only in HS, but not in DI rats. Simultaneously, only HS rats exhibited classical signs of chronic stress and severely blunted hormonal reactions to acute restraint. Data suggest that HPA axis responsiveness to restraint depends on the type of hypernatremia, and on NE capacity in the cVLM. Additionally, NE and PrRP signalization primarily of medullary origin is increased in the SON, PVN and AV3V in HS rats. This suggests a cooperative action in the adaptation responses and designates the AV3V as a new site for PrRP's action in hypernatremia.


Ovariectomy-induced hormone deprivation aggravates Aβ1-42 deposition in the basolateral amygdala and cholinergic fiber loss in the cortex but not cognitive behavioral symptoms in a triple transgenic mouse model of Alzheimer's disease.

  • Szidónia Farkas‎ et al.
  • Frontiers in endocrinology‎
  • 2022‎

Alzheimer's disease is the most common type of dementia, being highly prevalent in elderly women. The advanced progression may be due to decreased hormone synthesis during post-menopause as estradiol and progesterone both have neuroprotective potentials. We aimed to confirm that female hormone depletion aggravates the progression of dementia in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). As pathological hallmarks are known to appear in 6-month-old animals, we expected to see disease-like changes in the 4-month-old 3xTg-AD mice only after hormone depletion. Three-month-old female 3xTg-AD mice were compared with their age-matched controls. As a menopause model, ovaries were removed (OVX or Sham surgery). After 1-month recovery, the body composition of the animals was measured by an MRI scan. The cognitive and anxiety parameters were evaluated by different behavioral tests, modeling different aspects (Y-maze, Morris water maze, open-field, social discrimination, elevated plus maze, light-dark box, fox odor, operant conditioning, and conditioned fear test). At the end of the experiment, uterus was collected, amyloid-β accumulation, and the cholinergic system in the brain was examined by immunohistochemistry. The uterus weight decreased, and the body weight increased significantly in the OVX animals. The MRI data showed that the body weight change can be due to fat accumulation. Moreover, OVX increased anxiety in control, but decreased in 3xTg-AD animals, the later genotype being more anxious by default based on the anxiety z-score. In general, 3xTg-AD mice moved less. In relation to cognition, neither the 3xTg-AD genotype nor OVX surgery impaired learning and memory in general. Despite no progression of dementia-like behavior after OVX, at the histological level, OVX aggravated the amyloid-β plaque deposition in the basolateral amygdala and induced early cholinergic neuronal fiber loss in the somatosensory cortex of the transgenic animals. We confirmed that OVX induced menopausal symptoms. Removal of the sexual steroids aggravated the appearance of AD-related alterations in the brain without significantly affecting the behavior. Thus, the OVX in young, 3-month-old 3xTg-AD mice might be a suitable model for testing the effect of new treatment options on structural changes; however, to reveal any beneficial effect on behavior, a later time point might be needed.


Investigation of Anxiety- and Depressive-like Symptoms in 4- and 8-Month-Old Male Triple Transgenic Mouse Models of Alzheimer's Disease.

  • Dorottya Várkonyi‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Approximately 50% of AD patients show anxiety and depressive symptoms, which may contribute to cognitive decline. We aimed to investigate whether the triple-transgenic mouse (3xTg-AD) is a good preclinical model of this co-morbidity. The characteristic histological hallmarks are known to appear around 6-month; thus, 4- and 8-month-old male mice were compared with age-matched controls. A behavioral test battery was used to examine anxiety- (open field (OF), elevated plus maze, light-dark box, novelty suppressed feeding, and social interaction (SI) tests), and depression-like symptoms (forced swim test, tail suspension test, sucrose preference test, splash test, and learned helplessness) as well as the cognitive decline (Morris water maze (MWM) and social discrimination (SD) tests). Acetylcholinesterase histochemistry visualized cholinergic fibers in the cortex. Dexamethasone-test evaluated the glucocorticoid non-suppression. In the MWM, the 3xTg-AD mice found the platform later than controls in the 8-month-old cohort. The SD abilities of the 3xTg-AD mice were missing at both ages. In OF, both age groups of 3xTg-AD mice moved significantly less than the controls. During SI, 8-month-old 3xTg-AD animals spent less time with friendly social behavior than the controls. In the splash test, 3xTg-AD mice groomed themselves significantly less than controls of both ages. Cortical fiber density was lower in 8-month-old 3xTg-AD mice compared to the control. Dexamethasone non-suppression was detectable in the 4-month-old group. All in all, some anxiety- and depressive-like symptoms were present in 3xTg-AD mice. Although this strain was not generally more anxious or depressed, some aspects of comorbidity might be studied in selected tests, which may help to develop new possible treatments.


Sex-specific parenting and depression evoked by preoptic inhibitory neurons.

  • Diána Dimén‎ et al.
  • iScience‎
  • 2021‎

The role of preoptic GABAergic inhibitory neurons was addressed in parenting, anxiety and depression. Pup exposure and forced swimming resulted in similar c-Fos activation pattern in neurons expressing vesicular GABA transporter in the preoptic area with generally stronger labeling and different distributional pattern in females than in males. Chemogenetic stimulation of preoptic GABAergic cells resulted in elevated maternal motivation and caring behavior in females and mothers but aggression toward pups in males. Behavioral effects were the opposite following inhibition of preoptic GABAergic neurons suggesting their physiological relevance. In addition, increased anxiety-like and depression-like behaviors were found following chemogenetic stimulation of the same neurons in females, whereas previous pup exposure increased only anxiety-like behavior suggesting that not the pups, but overstimulation of the cells can lead to depression-like behavior. A sexually dimorphic projection pattern of preoptic GABAergic neurons was also identified, which could mediate sex-dependent parenting and associated emotional behaviors.


Median raphe region GABAergic neurons contribute to social interest in mouse.

  • Tiago Chaves‎ et al.
  • Life sciences‎
  • 2022‎

Gamma-aminobutyric acid (GABA) is a well-known inhibitory neurotransmitter implicated in numerous physiological and pathological behaviors including social interest. Dysregulation of the median raphe region (MRR), a main serotoninergic nucleus, is also characterized by increased social problems. As the majority of MRR cells are GABAergic, we aimed to reveal the social role of these cells. Chemogenetic techniques were used in vesicular GABA transporter Cre mice and with the help of adeno-associated virus vectors artificial receptors (DREADDs, stimulatory, inhibitory or control, containing only a fluorophore) were expressed in MRR GABAergic cells confirmed by immunohistochemistry. Four weeks after viral injection a behavioral test battery (sociability; social interaction; resident-intruder) was conducted. The artificial ligand (clozapine-N-oxide, 1 mg/10 ml/kg) was administrated 30 min before the tests. As possible confounding factors, locomotion (open field/OF), anxiety-like behavior (elevated plus maze/EPM), and short-term memory (Y-maze) were also evaluated. Stimulation of the GABAergic cells in MRR had no effect on locomotion or working and social memory; however, it increased social interest during sociability and social interaction but not in resident-intruder tests. Accordingly, c-Fos elevation in MRR-GABAergic cells was detected after sociability, but not resident-intruder tests. In the EPM test, the inhibitory group entered into the open arms later, suggesting an anxiogenic-like tendency. We confirmed the role of MRR-GABAergic cells in promoting social interest. However, different subpopulations (e.g. long vs short projecting, various neuropeptide containing) might have divergent roles, which might remain hidden and requires further studies.


Vasopressin deficiency diminishes acute and long-term consequences of maternal deprivation in male rat pups.

  • Dóra Zelena‎ et al.
  • Psychoneuroendocrinology‎
  • 2015‎

Early life events have special importance in the development as postnatal environmental alterations may permanently affect the lifetime vulnerability to diseases. For the interpretation of the long-term consequences it is important to understand the immediate effects. As the role of vasopressin in hypothalamic-pituitary-adrenal axis regulation as well as in affective disorders seem to be important we addressed the question whether the congenital lack of vasopressin will modify the stress reactivity of the pups and will influence the later consequences of single 24h maternal deprivation (MD) on both stress-reactivity and stress-related behavioral changes. Vasopressin-producing (di/+) and deficient (di/di) Brattleboro rat were used. In 10-day-old pups MD induced a remarkable corticosterone rise in both genotypes without adrenocorticotropin (ACTH) increase in di/di rats. Studying the later consequences at around weaning (25-35-day-old rats) we found somatic and hormonal alterations (body weight reduction, dysregulation of the stress axis) which were not that obvious in di/di rats. The more anxious state of MD rats was not detectable in di/di rats both at weaning and in adulthood (7-12-week-old). The lack of vasopressin abolished all chronic stress and anxiety-like tendencies both at weaning and in adulthood probably as a consequence of reduced ACTH rise immediately after MD in pups. This finding suggests that postnatal stress-induced ACTH rise may have long-term developmental consequences.


Maternal neglect with reduced depressive-like behavior and blunted c-fos activation in Brattleboro mothers, the role of central vasopressin.

  • Anna Fodor‎ et al.
  • Hormones and behavior‎
  • 2012‎

Early mother-infant relationships exert important long-term effects in offspring and are disturbed by factors such as postpartum depression. We aimed to clarify if lack of vasopressin influences maternal behavior paralleled by the development of a depressive-like phenotype. We compared vasopressin-deficient Brattleboro mothers with heterozygous and homozygous normal ones. The following parameters were measured: maternal behavior (undisturbed and separation-induced); anxiety by the elevated plus maze; sucrose and saccharin preference and forced swim behavior. Underlying brain areas were examined by c-fos immunocytochemistry among rest and after swim-stress. In another group of rats, vasopressin 2 receptor agonist was used peripherally to exclude secondary changes due to diabetes insipidus. Results showed that vasopressin-deficient rats spend less time licking-grooming their pups through a centrally driven mechanism. There was no difference between genotypes during the pup retrieval test. Vasopressin-deficient mothers tended to explore more the open arms of the plus maze, showed more preference for sucrose and saccharin and struggled more in the forced swim test, suggesting that they act as less depressive. Under basal conditions, vasopressin-deficient mothers had more c-fos expression in the medial preoptic area, shell of nucleus accumbens, paraventricular nucleus of the hypothalamus and amygdala, but not in other structures. In these areas the swim-stress-induced activation was smaller. In conclusion, vasopressin-deficiency resulted in maternal neglect due to a central effect and was protective against depressive-like behavior probably as a consequence of reduced activation of some stress-related brain structures. The conflicting behavioral data underscores the need for more sex specific studies.


Elevated Serum Purine Levels in Schizophrenia: A Reverse Translational Study to Identify Novel Inflammatory Biomarkers.

  • Zsüliet Kristóf‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2022‎

Immunological markers and related signaling molecules in the blood are altered in schizophrenia mouse models, in acutely relapsed patients with schizophrenia, and in persons at a clinically high risk for subsequently developing psychosis, highlighting their potential as prognostic and theranostic biomarkers. Therefore, we herein aimed to identify novel potential biomarkers in the serum that are associated with purinergic signaling.


Peptidergic neurons of the Edinger-Westphal nucleus express TRPA1 ion channel that is downregulated both upon chronic variable mild stress in male mice and in humans who died by suicide.

  • Viktória Kormos‎ et al.
  • Journal of psychiatry & neuroscience : JPN‎
  • 2022‎

Transient receptor potential ankyrin 1 (TRPA1), a cation channel, is expressed predominantly in primary sensory neurons, but its central distribution and role in mood control are not well understood. We investigated whether TRPA1 is expressed in the urocortin 1 (UCN1)-immunoreactive centrally projecting Edinger-Westphal nucleus (EWcp), and we hypothesized that chronic variable mild stress (CVMS) would reduce its expression in mice. We anticipated that TRPA1 mRNA would be present in the human EWcp, and that it would be downregulated in people who died by suicide.


The Effect of Vasopressin Antagonists on Maternal-Separation-Induced Ultrasonic Vocalization and Stress-Hormone Level Increase during the Early Postnatal Period.

  • Bibiána Török‎ et al.
  • Brain sciences‎
  • 2021‎

In adults, vasopressin exerts an anxiogenic effect, but less is known about the perinatal period. As a sign of distress, rat pups emit ultrasonic vocalizations when they are separated from their mothers, known as maternal separation-induced ultrasonic vocalization (MS-USV). Previously, reduced MS-USV was reported in 7-8-day-old genetically vasopressin-deficient Brattleboro rats. Here, we aimed to examine the contributing vasopressin receptor (VR) subtypes using Wistar pups. MS-USV was recorded for 10 min, 30 min after vasopressin (V) 1aR, V1bR or V2R antagonist treatment (SR49059, SSR149415, SR121463B; 3, 10 and 30 mg/kg, intraperitoneal). Sedation was studied by the righting reflex and negative geotaxis, and finally, the stress hormone levels were measured by radioimmunoassay. The vasopressin-deficient pups showed decreased MS-USV and adrenocorticotropin levels even after a saline injection, with unchanged corticosterone levels. Thirty mg/kg of V1aR-antagonist increased the corticosterone levels. All V1bR antagonist doses decreased the MS-USV and adrenocorticotropin, while 10 + 10 mg/kg of V1aR and V1bR antagonists decreased MS-USV without influencing the stress hormones. Three mg/kg of V2R antagonist enhanced MS-USV, while 30 mg/kg increased the stress hormone levels. We confirmed that vasopressin deficiency already caused anxiolytic effects in pups. V1bRs are the most important player in connection with their adrenocorticotropin (ACTH)-regulatory role, but a combination of V1aR and V1bR antagonists might be also beneficial through other mechanisms, reducing the possibility of side effects. In contrast, antagonizing the V2Rs may be stressful due to an induction of imbalance in saltwater homeostasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: