Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Applicability evaluation of advanced processes for elimination of neurophysiological activity of antidepressant fluoxetine.

  • László Szabó‎ et al.
  • Chemosphere‎
  • 2018‎

Presence of the antidepressant fluoxetine in different water bodies has raised significant concerns due to its detrimental effects on non-targeted organisms, especially on fish. When seeking for an appropriate technology able to remove fluoxetine residue from a complex water matrix, special attention needs to be paid to the elimination of the neurophysiological activity that eventually lies behind the noxious effects of the parent compound. Our aim was to probe the applicability of advanced oxidation techniques for this purpose using in situ generated free radical system based on OH-initiated peroxyl radical-mediated processes. By performing product analysis experiments along with quantum chemical calculations, the most probable reaction paths were analyzed including aromatic hydroxylation, defluorination, O-dealkylation and C-dealkylation. The candidates for neurophysiological activity were further investigated by molecular docking. The hydroxylated derivatives are well accommodated in the binding pocket of the corresponding protein, suggesting that these compounds may retain the activity of the parent compound. From a worst-case perspective, we suggest that prolonged treatment needs to be applied to further transform hydroxylated derivatives.


Novel potent (dihydro)benzofuranyl piperazines as human histamine receptor ligands - Functional characterization and modeling studies on H3 and H4 receptors.

  • Michelle F Corrêa‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2021‎

Histamine acts through four different receptors (H1R-H4R), the H3R and H4R being the most explored in the last years as drug targets. The H3R is a potential target to treat narcolepsy, Parkinson's disease, epilepsy, schizophrenia and several other CNS-related conditions, while H4R blockade leads to anti-inflammatory and immunomodulatory effects. Our group has been exploring the dihydrobenzofuranyl-piperazines (LINS01 series) as human H3R/H4R ligands as potential drug candidates. In the present study, a set of 12 compounds were synthesized from adequate (dihydro)benzofuran synthons through simple reactions with corresponding piperazines, giving moderate to high yields. Four compounds (1b, 1f, 1g and 1h) showed high hH3R affinity (pKi > 7), compound 1h being the most potent (pKi 8.4), and compound 1f showed the best efficiency (pKi 8.2, LE 0.53, LLE 5.85). BRET-based assays monitoring Gαi activity indicated that the compounds are potent antagonists. Only one compound (2c, pKi 7.1) presented high affinity for hH4R. In contrast to what was observed for hH3R, it showed partial agonist activity. Docking experiments indicated that bulky substituents occupy a hydrophobic pocket in hH3R, while the N-allyl group forms favorable interactions with hydrophobic residues in the TM2, 3 and 7, increasing the selectivity towards hH3R. Additionally, the importance of the indole NH in the interaction with Glu5.46 from hH4R was confirmed by the modeling results, explaining the affinity and agonistic activity of compound 2c. The data reported in this work represent important findings for the rational design of future compounds for hH3R and hH4R.


Binding kinetics of cariprazine and aripiprazole at the dopamine D3 receptor.

  • Annika Frank‎ et al.
  • Scientific reports‎
  • 2018‎

The dissociation behaviours of aripiprazole and cariprazine at the human D2 and D3 receptor are evaluated. A potential correlation between kinetics and in vivo profiles, especially cariprazine's action on negative symptoms in schizophrenia, is investigated. The binding kinetics of four ligands were indirectly evaluated. After the receptor preparations were pre-incubated with the unlabelled ligands, the dissociation was initiated with an excess of [3H]spiperone. Slow dissociation kinetics characterizes aripiprazole and cariprazine at the D2 receptor. At the D3 receptor, aripiprazole exhibits a slow monophasic dissociation, while cariprazine displays a rapid biphasic behaviour. Functional ß-arrestin assays and molecular dynamics simulations at the D3 receptor confirm a biphasic binding behaviour of cariprazine. This may influence its in vivo action, as the partial agonist could react rapidly to variations in the dopamine levels of schizophrenic patients and the ligand will not quantitatively dissociate from the receptor in one single step. With these findings novel agents may be developed that display rapid, biphasic dissociation from the D3R to further investigate this effect on in vivo profiles.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: