Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain.

  • Ramil R Noche‎ et al.
  • BMC neuroscience‎
  • 2011‎

The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc) mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression.


Small 6q16.1 Deletions Encompassing POU3F2 Cause Susceptibility to Obesity and Variable Developmental Delay with Intellectual Disability.

  • Paul R Kasher‎ et al.
  • American journal of human genetics‎
  • 2016‎

Genetic studies of intellectual disability and identification of monogenic causes of obesity in humans have made immense contribution toward the understanding of the brain and control of body mass. The leptin > melanocortin > SIM1 pathway is dysregulated in multiple monogenic human obesity syndromes but its downstream targets are still unknown. In ten individuals from six families, with overlapping 6q16.1 deletions, we describe a disorder of variable developmental delay, intellectual disability, and susceptibility to obesity and hyperphagia. The 6q16.1 deletions segregated with the phenotype in multiplex families and were shown to be de novo in four families, and there was dramatic phenotypic overlap among affected individuals who were independently ascertained without bias from clinical features. Analysis of the deletions revealed a ∼350 kb critical region on chromosome 6q16.1 that encompasses a gene for proneuronal transcription factor POU3F2, which is important for hypothalamic development and function. Using morpholino and mutant zebrafish models, we show that POU3F2 lies downstream of SIM1 and controls oxytocin expression in the hypothalamic neuroendocrine preoptic area. We show that this finding is consistent with the expression patterns of POU3F2 and related genes in the human brain. Our work helps to further delineate the neuro-endocrine control of energy balance/body mass and demonstrates that this molecular pathway is conserved across multiple species.


Enabling Metabolomics Based Biomarker Discovery Studies Using Molecular Phenotyping of Exosome-Like Vesicles.

  • Tatiana Altadill‎ et al.
  • PloS one‎
  • 2016‎

Identification of sensitive and specific biomarkers with clinical and translational utility will require smart experimental strategies that would augment expanding the breadth and depth of molecular measurements within the constraints of currently available technologies. Exosomes represent an information rich matrix to discern novel disease mechanisms that are thought to contribute to pathologies such as dementia and cancer. Although proteomics and transcriptomic studies have been reported using Exosomes-Like Vesicles (ELVs) from different sources, exosomal metabolome characterization and its modulation in health and disease remains to be elucidated. Here we describe methodologies for UPLC-ESI-MS based small molecule profiling of ELVs from human plasma and cell culture media. In this study, we present evidence that indeed ELVs carry a rich metabolome that could not only augment the discovery of low abundance biomarkers but may also help explain the molecular basis of disease progression. This approach could be easily translated to other studies seeking to develop predictive biomarkers that can subsequently be used with simplified targeted approaches.


Predicting new drug indications for prostate cancer: The integration of an in silico proteochemometric network pharmacology platform with patient-derived primary prostate cells.

  • Aisha Naeem‎ et al.
  • The Prostate‎
  • 2020‎

Drug repurposing enables the discovery of potential cancer treatments using publically available data from over 4000 published Food and Drug Administration approved and experimental drugs. However, the ability to effectively evaluate the drug's efficacy remains a challenge. Impediments to broad applicability include inaccuracies in many of the computational drug-target algorithms and a lack of clinically relevant biologic modeling systems to validate the computational data for subsequent translation.


CRISPR-Cas9 Knockdown and Induced Expression of CD133 Reveal Essential Roles in Melanoma Invasion and Metastasis.

  • Cynthia M Simbulan-Rosenthal‎ et al.
  • Cancers‎
  • 2019‎

CD133, known as prominin1, is a penta-span transmembrane glycoprotein presumably a cancer stem cell marker for carcinomas, glioblastomas, and melanomas. We showed that CD133(+) 'melanoma-initiating cells' are associated with chemoresistance, contributing to poor patient outcome. The current study investigates the role(s) of CD133 in invasion and metastasis. Magnetic-activated cell sorting of a melanoma cell line (BAKP) followed by transwell invasion assays revealed that CD133(+) cells are significantly more invasive than CD133(-) cells. Conditional reprogramming of BAKP CD133(+) cells maintained stable CD133 overexpression (BAK-R), and induced cancer stem cell markers, melanosphere formation, and chemoresistance to kinase inhibitors. BAK-R cells showed upregulated CD133 expression, and consequently were more invasive and metastatic than BAK-P cells in transwell and zebrafish assays. CD133 knockdown by siRNA or CRISPR-Cas9 (BAK-R-T3) in BAK-R cells reduced invasion and levels of matrix metalloproteinases MMP2/MMP9. BAK-R-SC cells, but not BAK-R-T3, were metastatic in zebrafish. While CD133 knockdown by siRNA or CRISPR-Cas9 in BAK-P cells attenuated invasion and diminished MMP2/MMP9 levels, doxycycline-induced CD133 expression in BAK-P cells enhanced invasion and MMP2/MMP9 concentrations. CD133 may therefore play an essential role in invasion and metastasis via upregulation of MMP2/MMP9, leading to tumor progression, and represents an attractive target for intervention in melanoma.


Tumor suppressor RARRES1- A novel regulator of fatty acid metabolism in epithelial cells.

  • Sara Maimouni‎ et al.
  • PloS one‎
  • 2018‎

Retinoic acid receptor responder 1 (RARRES1) is silenced in many cancers and is differentially expressed in metabolism associated diseases, such as hepatic steatosis, hyperinsulinemia and obesity. Here we report a novel function of RARRES1 in metabolic reprogramming of epithelial cells. Using non-targeted LC-MS, we discovered that RARRES1 depletion in epithelial cells caused a global increase in lipid synthesis. RARRES1-depleted cells rewire glucose metabolism by switching from aerobic glycolysis to glucose-dependent de novo lipogenesis (DNL). Treatment with fatty acid synthase (FASN) inhibitor, C75, reversed the effects of RARRES1 depletion. The increased DNL in RARRES1-depleted normal breast and prostate epithelial cells proved advantageous to the cells during starvation, as the increase in fatty acid availability lead to more oxidized fatty acids (FAO), which were used for mitochondrial respiration. Expression of RARRES1 in several common solid tumors is also contextually correlated with expression of fatty acid metabolism genes and fatty acid-regulated transcription factors. Pathway enrichment analysis led us to determine that RARRES1 is regulated by peroxisome proliferating activated receptor (PPAR) signaling. These findings open up a new avenue for metabolic reprogramming and identify RARRES1 as a potential target for cancers and other diseases with impaired fatty acid metabolism.


Id3 induces an Elk-1-caspase-8-dependent apoptotic pathway in squamous carcinoma cells.

  • You-Shin Chen‎ et al.
  • Cancer medicine‎
  • 2015‎

Inhibitor of differentiation/DNA-binding (Id) proteins are helix-loop-helix (HLH) transcription factors. The Id protein family (Id1-Id4) mediates tissue homeostasis by regulating cellular processes including differentiation, proliferation, and apoptosis. Ids typically function as dominant negative HLH proteins, which bind other HLH proteins and sequester them away from DNA promoter regions. Previously, we have found that Id3 induced apoptosis in immortalized human keratinocytes upon UVB exposure, consistent with its role as a tumor suppressor. To investigate the role of Id3 in malignant squamous cell carcinoma (SCC) cells (A431), a tetracycline-regulated inducible system was used to induce Id3 in cell culture and mouse xenograft models. We found that upon Id3 induction, there was a decrease in cell number under low serum conditions, as well as in soft agar. Microarray, RT-PCR, immunoblot, siRNA, and inhibitor studies revealed that Id3 induced expression of Elk-1, an E-twenty-six (ETS)-domain transcription factor, inducing procaspase-8 expression and activation. Id3 deletion mutants revealed that 80 C-terminal amino acids, including the HLH, are important for Id3-induced apoptosis. In a mouse xenograft model, Id3 induction decreased tumor size by 30%. Using immunofluorescent analysis, we determined that the tumor size decrease was also mediated through apoptosis. Furthermore, we show that Id3 synergizes with 5-FU and cisplatin therapies for nonmelanoma skin cancer cells. Our studies have shown a molecular mechanism by which Id3 induces apoptosis in SCC, and this information can potentially be used to develop new treatments for SCC patients.


Characterization of the effects of defined, multidimensional culture conditions on conditionally reprogrammed primary human prostate cells.

  • Lucas Tricoli‎ et al.
  • Oncotarget‎
  • 2018‎

The inability to propagate human prostate epithelial cells indefinitely has historically presented a serious impediment to prostate cancer research. The conditionally reprogrammed cell (CRC) approach uses the combination of irradiated J2 mouse fibroblasts and a Rho kinase inhibitor such as Y27632 to support the continuous culture of cells derived from most epithelial tissues, including the prostate. Due to their rapid establishment and overall ease of use, CRCs are now widely used in a variety of basic and preclinical settings. In addition, CRCs were successfully used to clinically treat respiratory papillomatosis. Although both normal and tumor-derived prostate CRCs have been used to study the basic biology of prostate cancer and to test new therapies, certain limitations exist. We have previously reported that prostate CRCs form functional prostate glands when implanted under the mouse renal capsule. However in conventional culture, the prostate CRCs exist in an adult stem-like, transient amplifying state and consequently do not adequately recapitulate several important features of a differentiated prostate epithelium. To address these limitations, we previously described a transwell dish-based model that supported the culturing of prostate CRCs and the collection of cells and cell extracts for molecular and genetic analyses. Using normal and tumor-derived prostate CRCs, we describe the combined effects of the multi-dimensional transwell platform and defined culture media on prostate cellular proliferation, differentiation and signaling.


Phytochemicals inhibit migration of triple negative breast cancer cells by targeting kinase signaling.

  • Pradip Shahi Thakuri‎ et al.
  • BMC cancer‎
  • 2020‎

Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs.


ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes.

  • Aleksandra Dakic‎ et al.
  • Oncotarget‎
  • 2016‎

The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death.


Hypopigmented burn hypertrophic scar contains melanocytes that can be signaled to re-pigment by synthetic alpha-melanocyte stimulating hormone in vitro.

  • Bonnie C Carney‎ et al.
  • PloS one‎
  • 2021‎

There are limited treatments for dyschromia in burn hypertrophic scars (HTSs). Initial work in Duroc pig models showed that regions of scar that are light or dark have equal numbers of melanocytes. This study aims to confirm melanocyte presence in regions of hypo- and hyper-pigmentation in an animal model and patient samples. In a Duroc pig model, melanocyte presence was confirmed using en face staining. Patients with dyschromic HTSs had demographic, injury details, and melanin indices collected. Punch biopsies were taken of regions of hyper-, hypo-, or normally pigmented scar and skin. Biopsies were processed to obtain epidermal sheets (ESs). A subset of ESs were en face stained with melanocyte marker, S100β. Melanocytes were isolated from a different subset. Melanocytes were treated with NDP α-MSH, a pigmentation stimulator. mRNA was isolated from cells, and was used to evaluate gene expression of melanin-synthetic genes. In patient and pig scars, regions of hyper-, hypo-, and normal pigmentation had significantly different melanin indices. S100β en face staining showed that regions of hyper- and hypo-pigmentation contained the same number of melanocytes, but these cells had different dendricity/activity. Treatment of hypo-pigmented melanocytes with NDP α-MSH produced melanin by microscopy. Melanin-synthetic genes were upregulated in treated cells over controls. While traditionally it may be thought that hypopigmented regions of burn HTS display this phenotype because of the absence of pigment-producing cells, these data show that inactive melanocytes are present in these scar regions. By treating with a pigment stimulator, cells can be induced to re-pigment.


Comparison of tumor growth assessment using GFP fluorescence and DiI labeling in a zebrafish xenograft model.

  • Yaal Dryer‎ et al.
  • Cancer biology & therapy‎
  • 2023‎

DiI is a lipophilic fluorescent dye frequently used to label and trace cells in cell cultures and xenograft models. However, DiI can also transfer from labeled to unlabeled cells, including host organism cells, and label dead cells obscuring interpretation of the results. These limitations of DiI labeling in xenograft models have not been thoroughly investigated. Here we labeled green fluorescent protein (GFP)-expressing MDA-MB-231 cells with DiI to directly compare tumor growth assessment in zebrafish xenografts using the DiI labeling and GFP fluorescence. Our results indicate that the DiI based assessment significantly overestimated tumor growth in zebrafish xenograft models compared to the GFP fluorescence based assessment. The imaging of DiI labeled GFP-expressing MDA-MB-231 cell cultures indicated that the DiI labeling of the membrane is uneven. Analysis of the DiI labeled GFP-expressing MDA-MB-231 cell cultures with flow cytometry indicated that the DiI labeling varied over time while the GFP fluorescence remained unchanged, suggesting that the GFP fluorescence is a more reliable signal for monitoring tumor progression than the DiI labeling. Taken together, our results demonstrate limitations of using DiI labeling for xenograft models and emphasize the need for validating the results based on DiI labeling with other orthogonal methods, such as the ones utilizing genetically encoded fluorophores.


Loss of the mitochondrial citrate carrier, Slc25a1/CIC disrupts embryogenesis via 2-Hydroxyglutarate.

  • Anna Kasprzyk-Pawelec‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Biallelic germline mutations in the SLC25A1 gene lead to combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a fatal systemic disease uniquely characterized by the accumulation of both enantiomers of 2-hydroxyglutaric acid (2HG). How SLC25A1 deficiency contributes to D/L-2HGA and the role played by 2HG is unclear and no therapy exists. Both enantiomers act as oncometabolites, but their activities in normal tissues remain understudied. Here we show that mice lacking both SLC25A1 alleles exhibit developmental abnormalities that mirror human D/L-2HGA. SLC25A1 deficient cells undergo premature senescence, suggesting that loss of proliferative capacity underlies the pathogenesis of D/L-2HGA. Remarkably, D- and L-2HG directly induce senescence and treatment of zebrafish embryos with the combination of D- and L-2HG phenocopies SLC25A1 loss, leading to developmental abnormalities in an additive fashion relative to either enantiomer alone. Metabolic analyses further demonstrate that cells with dysfunctional SLC25A1 undergo mitochondrial respiratory deficit and remodeling of the metabolism and we propose several strategies to correct these defects. These results reveal for the first time pathogenic and growth suppressive activities of 2HG in the context of SLC25A1 deficiency and suggest that targeting the 2HG pathway may be beneficial for the treatment of D/L-2HGA.


Sulfur mustard induces apoptosis in lung epithelial cells via a caspase amplification loop.

  • Radharaman Ray‎ et al.
  • Toxicology‎
  • 2010‎

Sulfur mustard (SM [bis-(2-chloroethyl) sulfide]) is a chemical warfare agent that causes skin blisters presumably due to DNA alkylation and cross-links. We recently showed that SM also induces apoptotic death in cultured normal human bronchial/tracheal epithelial (NHBE) cells and small airway epithelial cells (SAEC) in vitro. In this process, caspases-8 and -3, but not caspase-9, were strongly activated; this suggests a death receptor pathway for apoptosis. We now show that rat lungs were induced to undergo apoptosis in vivo following exposure of rats to SM by inhalation. Further study of the mechanism of apoptosis due to SM was performed with cultured NHBE cells and SAEC using tetrapeptide inhibitors of caspases-3, and -8. Inhibition of caspase-8 drastically reduced the activation of caspase-3 and almost eliminated that of caspase-9. Moreover, caspase-3 inhibition markedly reduced the activation of caspase-8 and also almost completely inhibited activation of caspase-9. These results suggest a death receptor pathway of apoptosis that utilizes a feedback amplification mechanism involving an activated death receptor complex that leads to the activation of caspase-9 via a caspase-3 pathway. These results may be important for the design of inhibitors of these pathways for therapeutic intervention to attenuate SM injury in respiratory tract lesions.


Calmodulin mediates sulfur mustard toxicity in human keratinocytes.

  • Cynthia M Simbulan-Rosenthal‎ et al.
  • Toxicology‎
  • 2006‎

Sulfur mustard (SM) causes blisters in the skin through a series of cellular changes that we are beginning to identify. We earlier demonstrated that SM toxicity is the result of induction of both death receptor and mitochondrial pathways of apoptosis in human keratinocytes (KC). Because of its importance in apoptosis in the skin, we tested whether calmodulin (CaM) mediates the mitochondrial apoptotic pathway induced by SM. Of the three human CaM genes, the predominant form expressed in KC was CaM1. RT-PCR and immunoblot analysis revealed upregulation of CaM expression following SM treatment. To delineate the potential role of CaM1 in the regulation of SM-induced apoptosis, retroviral vectors expressing CaM1 RNA in the antisense (AS) orientation were used to transduce and derive stable CaM1 AS cells, which were then exposed to SM and subjected to immunoblot analysis for expression of apoptotic markers. Proteolytic activation of executioner caspases-3, -6, -7, and the upstream caspase-9, as well as caspase-mediated PARP cleavage were markedly inhibited by CaM1 AS expression. CaM1 AS depletion attenuated SM-induced, but not Fas-induced, proteolytic processing and activation of caspase-3. Whereas control KC exhibited a marked increase in apoptotic nuclear fragmentation after SM, CaM1 AS cells exhibited normal nuclear morphology up to 48h after SM, indicating that suppression of apoptosis in CaM1 AS cells increases survival and does not shift to a necrotic death. CaM has been shown to activate the phosphatase calcineurin, which can induce apoptosis by Bad dephosphorylation. Interestingly, whereas SM-treated CaM1-depleted KC expressed the phosphorylated non-apoptotic sequestered form of Bad, Bad was present in the hypophosphorylated apoptotic form in SM-exposed control KC. To determine if pharmacological CaM inhibitors could attenuate SM-induced apoptosis via Bad dephosphorylation, KC were pretreated with the CaM-specific antagonist W-13 or its less active structural analogue W-12. Following SM exposure, KC exhibited Bad dephosphorylation, which was inhibited in the presence of W-13, but not with W-12. Consequently, W-13 but not W-12 markedly suppressed SM-induced proteolytic processing and activation of caspase-3, as well as apoptotic nuclear fragmentation. Finally, while the CaM antagonist W-13 and the calcineurin inhibitor cyclosporin A attenuated SM-induced caspase-3 activation, inhibitors for CaM-dependent protein kinase II (KN62 and KN93) did not. These results indicate that CaM, calcineurin, and Bad also play a role in SM-induced apoptosis, and may therefore be targets for therapeutic intervention to reduce SM injury.


Employing CRISPR-Cas9 to Generate CD133 Synthetic Lethal Melanoma Stem Cells.

  • Cynthia M Simbulan-Rosenthal‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133's anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.


MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus.

  • Patricia Blanchet‎ et al.
  • PLoS genetics‎
  • 2017‎

Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.


PRAJA is overexpressed in glioblastoma and contributes to neural precursor development.

  • Joshua Shin‎ et al.
  • Genes & cancer‎
  • 2017‎

PRAJA, a RING-H2 E3 ligase, is abundantly expressed in brain tissues such as the cerebellum and frontal cortex, amongst others, and more specifically in neural progenitor cells as well as in multiple cancers that include glioblastomas. However, the specific role that Praja plays in neural development and gliomas remains unclear. In this investigation, we performed bioinformatic analyses to examine Praja1 and Praja2 expression across 29 cancer types, and observed raised levels of Praja1 and Praja2 in gliomas with an inverse relationship between Praja1 and apoptotic genes and Praja substrates such as Smad3. We analyzed the role of Praja in the developing brain through loss of function studies, using morpholinos targeting Praja1 in embryonic zebrafish, and observed that Praja1 is expressed prominently in regions enriched with neural precursor cell subtypes. Antisense Praja morpholinos resulted in multiple embryonic defects including delayed neural development likely through increased apoptosis. Further studies revealed high levels of Cdk1 with loss of Praja1 in TGF-β or insulin treated cells, supporting the link between Praja1 and cell cycle regulation. In summary, these studies underscore Praja's role in mammalian brain development and Praja1 deregulation may lead to gliomas possibly through the regulation of cell cycle and/or apoptosis.


A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug.

  • Chen Chen‎ et al.
  • Scientific reports‎
  • 2017‎

Adenoid cystic carcinomas (ACC) are rare salivary gland cancers with a high incidence of metastases. In order to study this tumor type, a reliable model system exhibiting the molecular features of this tumor is critical, but none exists, thereby inhibiting in-vitro studies and the analysis of metastatic behavior. To address this deficiency, we have coupled an efficient method to establish tumor cell cultures, conditional reprogramming (CR), with a rapid, reproducible and robust in-vivo zebrafish model. We have established cell cultures from two individual ACC PDX tumors that maintain the characteristic MYB translocation. Additional mutations found in one ACC culture also seen in the PDX tumor. Finally, the CR/zebrafish model mirrors the PDX mouse model and identifies regorafenib as a potential therapeutic drug to treat this cancer type that mimic the drug sensitivity profile in PDX model, further confirming the unique advantages of multiplex system.


Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

  • Rupert J Egan‎ et al.
  • Behavioural brain research‎
  • 2009‎

The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: