Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 74 papers

Homeodomain transcription factor NKX2.2 functions in immature cells to control enteroendocrine differentiation and is expressed in gastrointestinal neuroendocrine tumors.

  • Yu-Cheng Wang‎ et al.
  • Endocrine-related cancer‎
  • 2009‎

The homeodomain transcription factor NKX2.2 is necessary for neuroendocrine (NE) differentiation in the central nervous system and pancreas. NE tumors derived from the gut are defined by their NE phenotype, which is used for diagnosis and contributes to tumorigenicity. We hypothesized that NKX2.2 is important for NE differentiation in normal and neoplastic gut. NKX2.2 and NE marker expression was investigated in the small intestine of embryonic and adult mice using immunofluorescence (IF). To determine the role of NKX2.2 in NE differentiation of the intestine, the phenotype of Nkx2.2 (-/-) mice was examined by IF and real-time (RT)-PCR. NKX2.2 and NE marker expression in human NE tumors of the gut and normal tissues were evaluated by immunohistochemistry and qRT-PCR. NKX2.2 expression was detected in the intervillus/crypt regions of embryonic and adult mouse intestine. Co-expression of Nkx2.2 with neurogenin3 (NEUROG3) and hormones was observed in the adult intestinal crypt compartment, suggesting NKX2.2 functions in NEUROG3-positive endocrine progenitors and newly differentiated endocrine cells. In the intestine of Nkx2.2 (-/-) mice, we found a dramatic reduction in the number of cells producing numerous hormones, such as serotonin, gastrin, cholecystokinin, somatostatin, glucagon-like peptide 1 (GLP-1), and secretin, but an increase in cells producing ghrelin. NKX2.2 was expressed in most (24 of 29) human NE tumors derived from diverse primary sites. We conclude NKX2.2 functions in immature endocrine cells to control NE differentiation in normal intestine and is expressed in most NE tumors of the gut, and is therefore a novel target of diagnosis for patients with gastrointestinal NE tumors.


Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor heteromerization.

  • Gina M Whitaker‎ et al.
  • PloS one‎
  • 2012‎

In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.


High Content Imaging of Barrett's-Associated High-Grade Dysplasia Cells After siRNA Library Screening Reveals Acid-Responsive Regulators of Cellular Transitions.

  • Sinead M Phipps‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2020‎

Esophageal adenocarcinoma (EAC) develops from within Barrett's esophagus (BE) concomitant with gastroesophageal reflux disease (GERD). Wound healing processes and cellular transitions, such as epithelial-mesenchymal transitions, may contribute to the development of BE and the eventual migratory escape of metastatic cancer cells. Herein, we attempt to identify the genes underlying esophageal cellular transitions and their potential regulation by the low pH environments observed in GERD and commonly encountered by escaping cancer cells.


Presynaptic Boutons That Contain Mitochondria Are More Stable.

  • Robert M Lees‎ et al.
  • Frontiers in synaptic neuroscience‎
  • 2019‎

The addition and removal of presynaptic terminals reconfigures neuronal circuits of the mammalian neocortex, but little is known about how this presynaptic structural plasticity is controlled. Since mitochondria can regulate presynaptic function, we investigated whether the presence of axonal mitochondria relates to the structural plasticity of presynaptic boutons in mouse neocortex. We found that the overall density of axonal mitochondria did not appear to influence the loss and gain of boutons. However, positioning of mitochondria at individual presynaptic sites did relate to increased stability of those boutons. In line with this, synaptic localization of mitochondria increased as boutons aged and showed differing patterns of localization at en passant and terminaux boutons. These results suggest that mitochondria accumulate locally at boutons over time to increase bouton stability.


Hyperinsulinemia in Obesity, Inflammation, and Cancer.

  • Anni M Y Zhang‎ et al.
  • Diabetes & metabolism journal‎
  • 2021‎

The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.


Flow-Induced Secretion of Endothelial Heparanase Regulates Cardiac Lipoprotein Lipase and Changes Following Diabetes.

  • Chae Syng Lee‎ et al.
  • Journal of the American Heart Association‎
  • 2022‎

Background Lipoprotein lipase (LPL)-derived fatty acid is a major source of energy for cardiac contraction. Synthesized in cardiomyocytes, LPL requires translocation to the vascular lumen for hydrolysis of lipoprotein triglyceride, an action mediated by endothelial cell (EC) release of heparanase. We determined whether flow-mediated biophysical forces can cause ECs to secrete heparanase and thus regulate cardiac metabolism. Methods and Results Isolated hearts were retrogradely perfused. Confluent rat aortic ECs were exposed to laminar flow using an orbital shaker. Cathepsin L activity was determined using gelatin-zymography. Diabetes was induced in rats with streptozotocin. Despite the abundance of enzymatically active heparanase in the heart, it was the enzymatically inactive, latent heparanase that was exceptionally responsive to flow-induced release. EC exposed to orbital rotation exhibited a similar pattern of heparanase secretion, an effect that was reproduced by activation of the mechanosensor, Piezo1. The laminar flow-mediated release of heparanase from EC required activation of both the purinergic receptor and protein kinase D, a kinase that assists in vesicular transport of proteins. Heparanase influenced cardiac metabolism by increasing cardiomyocyte LPL displacement along with subsequent replenishment. The flow-induced heparanase secretion was augmented following diabetes and could explain the increased heparin-releasable pool of LPL at the coronary lumen in these diabetic hearts. Conclusions ECs sense fluid shear-stress and communicate this information to subjacent cardiomyocytes with the help of heparanase. This flow-induced mechanosensing and its dynamic control of cardiac metabolism to generate ATP, using LPL-derived fatty acid, is exquisitely adapted to respond to disease conditions, like diabetes.


Islet amyloid polypeptide does not suppress pancreatic cancer.

  • Austin J Taylor‎ et al.
  • Molecular metabolism‎
  • 2023‎

Pancreatic cancer risk is elevated approximately two-fold in type 1 and type 2 diabetes. Islet amyloid polypeptide (IAPP) is an abundant beta-cell peptide hormone that declines with diabetes progression. IAPP has been reported to act as a tumour-suppressor in p53-deficient cancers capable of regressing tumour volumes. Given the decline of IAPP during diabetes development, we investigated the actions of IAPP in pancreatic ductal adenocarcinoma (PDAC; the most common form of pancreatic cancer) to determine if IAPP loss in diabetes may increase the risk of pancreatic cancer.


Hyperinsulinemia acts via acinar insulin receptors to initiate pancreatic cancer by increasing digestive enzyme production and inflammation.

  • Anni M Y Zhang‎ et al.
  • Cell metabolism‎
  • 2023‎

The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.


Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation.

  • Paul Petrus‎ et al.
  • EBioMedicine‎
  • 2019‎

A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored.


AAV GCG-EGFP, a new tool to identify glucagon-secreting α-cells.

  • Eva Tudurí‎ et al.
  • Scientific reports‎
  • 2019‎

The study of primary glucagon-secreting α-cells is hampered by their low abundance and scattered distribution in rodent pancreatic islets. We have designed a double-stranded adeno-associated virus containing a rat proglucagon promoter (700 bp) driving enhanced green fluorescent protein (AAV GCG-EGFP), to specifically identify α-cells. The administration of AAV GCG-EGFP by intraperitoneal or intraductal injection led to EGFP expression selectively in the α-cell population. AAV GCG-EGFP delivery to mice followed by islet isolation, dispersion and separation by FACS for EGFP resulted in an 86% pure population of α-cells. Furthermore, the administration of AAV GCG-EGFP at various doses to adult wild type mice did not significantly alter body weight, blood glucose, plasma insulin or glucagon levels, glucose tolerance or arginine tolerance. In vitro experiments in transgene positive α-cells demonstrated that EGFP expression did not alter the intracellular Ca2+ pattern in response to glucose or adrenaline. This approach may be useful for studying purified primary α-cells and for the in vivo delivery of other genes selectively to α-cells to further probe their function or to manipulate them for therapeutic purposes.


TrxG Complex Catalytic and Non-catalytic Activity Play Distinct Roles in Pancreas Progenitor Specification and Differentiation.

  • Stephanie A Campbell‎ et al.
  • Cell reports‎
  • 2019‎

Appropriate regulation of genes that coordinate pancreas progenitor proliferation and differentiation is required for pancreas development. Here, we explore the role of H3K4 methylation and the Trithorax group (TrxG) complexes in mediating gene expression during pancreas development. Disruption of TrxG complex assembly, but not catalytic activity, prevented endocrine cell differentiation in pancreas progenitor spheroids. In vivo loss of TrxG catalytic activity in PDX1+ cells increased apoptosis and the fraction of progenitors in the G1 phase of the cell cycle. Pancreas progenitors were reallocated to the acinar lineage, primarily at the expense of NEUROG3+ endocrine progenitors. Later in development, acinar and endocrine cell numbers were decreased, and increased gene expression variance and reduced terminal marker activation in acinar cells led to their incomplete differentiation. These findings demonstrate that TrxG co-activator activity is required for gene induction, whereas TrxG catalytic activity and H3K4 methylation help maintain transcriptional stability.


Impaired Ca(2+) signaling in β-cells lacking leptin receptors by Cre-loxP recombination.

  • Eva Tudurí‎ et al.
  • PloS one‎
  • 2013‎

Obesity is a major risk factor for diabetes and is typically associated with hyperleptinemia and a state of leptin resistance. The impact of chronically elevated leptin levels on the function of insulin-secreting β-cells has not been elucidated. We previously generated mice lacking leptin signaling in β-cells by using the Cre-loxP strategy and showed that these animals develop increased body weight and adiposity, hyperinsulinemia, impaired glucose-stimulated insulin secretion and insulin resistance. Here, we performed several in vitro studies and observed that β-cells lacking leptin signaling in this model are capable of properly metabolizing glucose, but show impaired intracellular Ca(2+) oscillations and lack of synchrony within the islets in response to glucose, display reduced response to tolbutamide and exhibit morphological abnormalities including increased autophagy. Defects in intracellular Ca(2+) signaling were observed even in neonatal islets, ruling out the possible contribution of obesity to the β-cell irregularities observed in adults. In parallel, we also detected a disrupted intracellular Ca(2+) pattern in response to glucose and tolbutamide in control islets from adult transgenic mice expressing Cre recombinase under the rat insulin promoter, despite these animals being glucose tolerant and secreting normal levels of insulin in response to glucose. This unexpected observation impeded us from discerning the consequences of impaired leptin signaling as opposed to long-term Cre expression in the function of insulin-secreting cells. These findings highlight the need to generate improved Cre-driver mouse models or new tools to induce Cre recombination in β-cells.


Npas4 is a novel activity-regulated cytoprotective factor in pancreatic β-cells.

  • Paul V Sabatini‎ et al.
  • Diabetes‎
  • 2013‎

Cellular homeostasis requires intrinsic sensing mechanisms to temper function in the face of prolonged activity. In the pancreatic β-cell, glucose is likely a physiological trigger that activates an adaptive response to stimulation, thereby maintaining cellular homeostasis. Immediate early genes (IEGs) are activated as a first line of defense in cellular homeostasis and are largely responsible for transmitting an environmental cue to a cellular response. Here we examine the regulation and function of the novel β-cell IEG, neuronal PAS domain protein 4 (Npas4). Using MIN6 cells, mouse and human islets, as well as in vivo infusions, we demonstrate that Npas4 is expressed within pancreatic islets and is upregulated by β-cell depolarizing agents. Npas4 tempers β-cell function through a direct inhibitory interaction with the insulin promoter and by blocking the potentiating effects of GLP-1 without significantly reducing glucose-stimulated secretion. Finally, Npas4 expression is induced by classical endoplasmic reticulum (ER) stressors and can prevent thapsigargin- and palmitate-induced dysfunction and cell death. These results suggest that Npas4 is a key activity-dependent regulator that improves β-cell efficiency in the face of stress. We posit that Npas4 could be a novel therapeutic target in type 2 diabetes that could both reduce ER stress and cell death and maintain basal cell function.


Transgenic overexpression of active calcineurin in beta-cells results in decreased beta-cell mass and hyperglycemia.

  • Ernesto Bernal-Mizrachi‎ et al.
  • PloS one‎
  • 2010‎

Glucose modulates beta-cell mass and function through an initial depolarization and Ca(2+) influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca(2+) signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for beta-cell proliferation, and that in its absence loss of beta-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of beta-cell mass and resistance to diabetes.


14-3-3ζ coordinates adipogenesis of visceral fat.

  • Gareth E Lim‎ et al.
  • Nature communications‎
  • 2015‎

The proteins that coordinate complex adipogenic transcriptional networks are poorly understood. 14-3-3ζ is a molecular adaptor protein that regulates insulin signalling and transcription factor networks. Here we report that 14-3-3ζ-knockout mice are strikingly lean from birth with specific reductions in visceral fat depots. Conversely, transgenic 14-3-3ζ overexpression potentiates obesity, without exacerbating metabolic complications. Only the 14-3-3ζ isoform is essential for adipogenesis based on isoform-specific RNAi. Mechanistic studies show that 14-3-3ζ depletion promotes autophagy-dependent degradation of C/EBP-δ, preventing induction of the master adipogenic factors, Pparγ and C/EBP-α. Transcriptomic data indicate that 14-3-3ζ acts upstream of hedgehog signalling-dependent upregulation of Cdkn1b/p27(Kip1). Indeed, concomitant knockdown of p27(Kip1) or Gli3 rescues the early block in adipogenesis induced by 14-3-3ζ knockdown in vitro. Adipocyte precursors in 14-3-3ζKO embryos also appear to have greater Gli3 and p27(Kip1) abundance. Together, our in vivo and in vitro findings demonstrate that 14-3-3ζ is a critical upstream driver of adipogenesis.


A live-cell, high-content imaging survey of 206 endogenous factors across five stress conditions reveals context-dependent survival effects in mouse primary beta cells.

  • Yu Hsuan Carol Yang‎ et al.
  • Diabetologia‎
  • 2015‎

Beta cell death is a hallmark of diabetes. It is not known whether specific cellular stresses associated with type 1 or type 2 diabetes require specific factors to protect pancreatic beta cells. No systematic comparison of endogenous soluble factors in the context of multiple pro-apoptotic conditions has been published.


Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations.

  • Tobias Albrecht‎ et al.
  • Cell calcium‎
  • 2015‎

Live cell imaging has revealed that calcium ions (Ca(2+)) pass in and out of many cellular organelles. However, technical hurdles have limited measurements of Ca(2+) in acidic organelles, such as endosomes. Although evidence hints that endosomes play a role in Ca(2+) signaling, direct measurements within endosomal lumina represent one of the final frontiers in organelle imaging. To measure Ca(2+) in a TiVAMP-positive endosome sub-population, the pH-resistant ratiometric Ca(2+) biosensor GEM-GECO1 and the ratiometric pH biosensor mKeima were used. A positive correlation between acidic endosomal pH and higher Ca(2+) was observed within these Rab5a- and Rab7-positive compartments. Ca(2+) concentration in most endosomes was estimated to be below 2μM, lower than Ca(2+) levels in several other intracellular stores, indicating that endosomes may take up Ca(2+) during physiological stimulation. Indeed, endosomes accumulated Ca(2+) during glucose-stimulation, a condition where endosomal pH did not change. Our biosensors permitted the first measurements revealing a role for endosomes in cellular Ca(2+) homeostasis during physiological stimulation.


Beta-cell hubs maintain Ca2+ oscillations in human and mouse islet simulations.

  • Chon-Lok Lei‎ et al.
  • Islets‎
  • 2018‎

Islet β-cells are responsible for secreting all circulating insulin in response to rising plasma glucose concentrations. These cells are a phenotypically diverse population that express great functional heterogeneity. In mice, certain β-cells (termed 'hubs') have been shown to be crucial for dictating the islet response to high glucose, with inhibition of these hub cells abolishing the coordinated Ca2+ oscillations necessary for driving insulin secretion. These β-cell hubs were found to be highly metabolic and susceptible to pro-inflammatory and glucolipotoxic insults. In this study, we explored the importance of hub cells in human by constructing mathematical models of Ca2+ activity in human islets. Our simulations revealed that hubs dictate the coordinated Ca2+ response in both mouse and human islets; silencing a small proportion of hubs abolished whole-islet Ca2+ activity. We also observed that if hubs are assumed to be preferentially gap junction coupled, then the simulations better adhere to the available experimental data. Our simulations of 16 size-matched mouse and human islet architectures revealed that there are species differences in the role of hubs; Ca2+ activity in human islets was more vulnerable to hub inhibition than mouse islets. These simulation results not only substantiate the existence of β-cell hubs, but also suggest that hubs may be favorably coupled in the electrical and metabolic network of the islet, and that targeted destruction of these cells would greatly impair human islet function.


Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation.

  • Su-Jin Kim‎ et al.
  • Diabetes‎
  • 2009‎

The endopeptidase dipeptidyl peptidase-IV (DPP-IV) has been shown to NH2-terminally truncate incretin hormones, glucose-dependent insulinotropic polypeptide, and glucagon-like peptide-1, thus ablating their ability to potentiate glucose-stimulated insulin secretion. Increasing the circulating levels of incretins through administration of DPP-IV inhibitors has therefore been introduced as a therapeutic approach for the treatment of type 2 diabetes. DPP-IV inhibitor treatment has also been shown to preserve islet mass in rodent models of type 1 diabetes. The current study was initiated to define the effects of the DPP-IV inhibitor sitagliptin (MK0431) on transplanted islet survival in nonobese diabetic (NOD) mice, an autoimmune type 1 diabetes model.


Acute effects of insulin on beta-cells from transplantable human islets.

  • Dan S Luciani‎ et al.
  • Molecular and cellular endocrinology‎
  • 2005‎

The functional role of autocrine insulin signaling remains unclear despite considerable investigation. In the present study, we tested the effects of high and low doses of exogenous insulin on Ca2+ signaling, insulin synthesis and insulin secretion in dispersed human islet cells using a combination of imaging, radioimmunoassay and patch-clamp electrophysiology. Although 200 nM insulin stimulated Ca2+ signals with larger amplitudes, the percentage of responding cells was lower when compared with 0.2 nM insulin. However, both 0.2 nM insulin and 200 nM insulin led to a transient increase in accessible cellular insulin content under conditions that glucose did not. This pool of insulin likely reflected de novo synthesis as it could be blocked by cyclohexamide or actinomycin D. Blocking endogenous autocrine insulin signaling in quiescent beta-cells with the insulin receptor inhibitor HMNPA led to a reduction in insulin synthesis, suggesting some degree of basal activity of this positive feed-forward loop. Unlike exposure to high glucose, acute treatment with insulin did not stimulate robust insulin exocytosis, as estimated by C-peptide release and capacitance measurements from single beta-cells. Together these data provide further evidence that autocrine insulin signaling can regulate the function of human pancreatic beta-cells. Our findings suggest autocrine insulin signaling directly controls insulin protein levels, but not exocytosis, in beta-cells and demonstrate the functional specificity of insulin signaling and glucose signaling in human islet cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: