Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Definition of miRNAs expression profile in glioblastoma samples: the relevance of non-neoplastic brain reference.

  • Michela Visani‎ et al.
  • PloS one‎
  • 2013‎

Glioblastoma is the most aggressive brain tumor that may occur in adults. Regardless of the huge improvements in surgery and molecular therapy, the outcome of neoplasia remains poor. MicroRNAs are small molecules involved in several cellular processes, and their expression is altered in the vast majority of tumors. Several studies reported the expression of different miRNAs in glioblastoma, but one of the most critical point in understanding glioblastoma miRNAs profile is the comparison of these studies. In this paper, we focused our attention on the non-neoplastic references used for determining miRNAs expression. The aim of this study was to investigate if using three different non-neoplastic brain references (normal adjacent the tumor, commercial total RNA, and epileptic specimens) could provide discrepant results. The analysis of 19 miRNAs was performed using Real-Time PCR, starting from the set of samples described above and the expression values compared. Moreover, the three different normal RNAs were used to determine the miRNAs profile in 30 glioblastomas. The data showed that different non-neoplastic controls could lead to different results and emphasize the importance of comparing miRNAs profiles obtained using the same experimental condition.


Metal Nanoparticles Released from Dental Implant Surfaces: Potential Contribution to Chronic Inflammation and Peri-Implant Bone Loss.

  • Eriberto Bressan‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2019‎

Peri-implantitis is an inflammatory disease affecting tissues surrounding dental implants. Although it represents a common complication of dental implant treatments, the underlying mechanisms have not yet been fully described. The aim of this study is to identify the role of titanium nanoparticles released form the implants on the chronic inflammation and bone lysis in the surrounding tissue. We analyzed the in vitro effect of titanium (Ti) particle exposure on mesenchymal stem cells (MSCs) and fibroblasts (FU), evaluating cell proliferation by MTT test and the generation of reactive oxygen species (ROS). Subsequently, in vivo analysis of peri-implant Ti particle distribution, histological, and molecular analyses were performed. Ti particles led to a time-dependent decrease in cell viability and increase in ROS production in both MSCs and FU. Tissue analyses revealed presence of oxidative stress, high extracellular and intracellular Ti levels and imbalanced bone turnover. High expression of ZFP467 and the presence of adipose-like tissue suggested dysregulation of the MSC population; alterations in vessel morphology were identified. The results suggest that Ti particles may induce the production of high ROS levels, recruiting abnormal quantity of neutrophils able to produce high level of metalloproteinase. This induces the degradation of collagen fibers. These events may influence MSC commitment, with an imbalance of bone regeneration.


Compatible solutes from hyperthermophiles improve the quality of DNA microarrays.

  • Nicoletta Mascellani‎ et al.
  • BMC biotechnology‎
  • 2007‎

DNA microarrays are among the most widely used technical platforms for DNA and RNA studies, and issues related to microarrays sensitivity and specificity are therefore of general importance in life sciences. Compatible solutes are derived from hyperthermophilic microorganisms and allow such microorganisms to survive in environmental and stressful conditions. Compatible solutes show stabilization effects towards biological macromolecules, including DNA.


Differences in local population history at the finest level: the case of the Estonian population.

  • Vasili Pankratov‎ et al.
  • European journal of human genetics : EJHG‎
  • 2020‎

Several recent studies detected fine-scale genetic structure in human populations. Hence, groups conventionally treated as single populations harbour significant variation in terms of allele frequencies and patterns of haplotype sharing. It has been shown that these findings should be considered when performing studies of genetic associations and natural selection, especially when dealing with polygenic phenotypes. However, there is little understanding of the practical effects of such genetic structure on demography reconstructions and selection scans when focusing on recent population history. Here we tested the impact of population structure on such inferences using high-coverage (~30×) genome sequences of 2305 Estonians. We show that different regions of Estonia differ in both effective population size dynamics and signatures of natural selection. By analyzing identity-by-descent segments we also reveal that some Estonian regions exhibit evidence of a bottleneck 10-15 generations ago reflecting sequential episodes of wars, plague and famine, although this signal is virtually undetected when treating Estonia as a single population. Besides that, we provide a framework for relating effective population size estimated from genetic data to actual census size and validate it on the Estonian population. This approach may be widely used both to cross-check estimates based on historical sources as well as to get insight into times and/or regions with no other information available. Our results suggest that the history of human populations within the last few millennia can be highly region specific and cannot be properly studied without taking local genetic structure into account.


Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats.

  • Louise Y Fong‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Prostate cancer is a leading cause of cancer death in men over 50 years of age, and there is a characteristic marked decrease in Zn content in the malignant prostate cells. The cause and consequences of this loss have thus far been unknown. We found that in middle-aged rats a Zn-deficient diet reduces prostatic Zn levels (P = 0.025), increases cellular proliferation, and induces an inflammatory phenotype with COX-2 overexpression. This hyperplastic/inflammatory prostate has a human prostate cancer-like microRNA profile, with up-regulation of the Zn-homeostasis-regulating miR-183-96-182 cluster (fold change = 1.41-2.38; P = 0.029-0.0003) and down-regulation of the Zn importer ZIP1 (target of miR-182), leading to a reduction of prostatic Zn. This inverse relationship between miR-182 and ZIP1 also occurs in human prostate cancer tissue, which is known for Zn loss. The discovery that the Zn-depleted middle-aged rat prostate has a metabolic phenotype resembling that of human prostate cancer, with a 10-fold down-regulation of citric acid (P = 0.0003), links citrate reduction directly to prostatic Zn loss, providing the underlying mechanism linking dietary Zn deficiency with miR-183-96-182 overexpression, ZIP1 down-regulation, prostatic Zn loss, and the resultant citrate down-regulation, changes mimicking features of human prostate cancer. Thus, dietary Zn deficiency during rat middle age produces changes that mimic those of human prostate carcinoma and may increase the risk for prostate cancer, supporting the need for assessment of Zn supplementation in its prevention.


MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency.

  • Louise Y Fong‎ et al.
  • Oncotarget‎
  • 2016‎

Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC), and marginal ZD is prevalent in humans. In rats, marked-ZD (3 mg Zn/kg diet) induces a proliferative esophagus with a 5-microRNA signature (miR-31, -223, -21, -146b, -146a) and promotes ESCC. Here we report that moderate and mild-ZD (6 and 12 mg Zn/kg diet) also induced esophageal hyperplasia, albeit less pronounced than induced by marked-ZD, with a 2-microRNA signature (miR-31, -146a). On exposure to an environmental carcinogen, ~16% of moderate/mild-ZD rats developed ESCC, a cancer incidence significantly greater than for Zn-sufficient rats (0%) (P ≤ 0.05), but lower than marked-ZD rats (68%) (P < 0.001). Importantly, the high ESCC, marked-ZD esophagus had a 15-microRNA signature, resembling the human ESCC miRNAome, with miR-223, miR-21, and miR-31 as the top-up-regulated species. This signature discriminated it from the low ESCC, moderate/mild-ZD esophagus, with a 2-microRNA signature (miR-31, miR-223). Additionally, Fbxw7, Pdcd4, and Stk40 (tumor-suppressor targets of miR-223, -21, and -31) were downregulated in marked-ZD cohort. Bioinformatics analysis predicted functional relationships of the 3 tumor-suppressors with other cancer-related genes. Thus, microRNA dysregulation and ESCC progression depend on the extent of dietary Zn deficiency. Our findings suggest that even moderate ZD may promote esophageal cancer and dietary Zn has preventive properties against ESCC. Additionally, the deficiency-associated miR-223, miR-21, and miR-31 may be useful therapeutic targets in ESCC.


Zinc deficiency activates S100A8 inflammation in the absence of COX-2 and promotes murine oral-esophageal tumor progression.

  • Shao-Gui Wan‎ et al.
  • International journal of cancer‎
  • 2011‎

Zinc (Zn)-deficiency (ZD) is implicated in the pathogenesis of human oral-esophageal cancers. Previously, we showed that in ZD mice genetic deletion of cyclooxygenase-2 (Cox-2) enhances N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. By contrast, Cox-2 deletion offers protection in Zn-sufficient (ZS) mice. We hypothesize that ZD activates pathways insensitive to COX-2 inhibition, thereby promoting carcinogenesis. This hypothesis is tested in a Cox-2(-/-) mouse tongue cancer model that mimics pharmacologic blockade of COX-2 by firstly examining transcriptome profiles of forestomach mucosa from Cox-2(-/-) and wild-type mice on a ZD vs. ZS diet, and secondly investigating the roles of identified markers in mouse forestomach/tongue preneoplasia and carcinomas. In Cox-2(-/-) mice exposed to the tongue carcinogen 4-nitroquinoline 1-oxide, dietary ZD elicited tongue/esophagus/forestomach carcinomas that were prevented by ZS. The precancerous ZD:Cox-2(-/-) vs. ZS:Cox-2(-/-) forestomach had an inflammatory signature with upregulation of the proinflammation genes S100a8 and S100a9. Bioinformatics analysis revealed overrepresentation of inflammation processes comprising S100a8/a9 and an nuclear factor (NF)-κB network with connectivity to S100A8. Immunohistochemistry revealed co-overexpression of S100A8, its heterodimeric partner S100A9, the receptor for advanced glycation end-products (RAGE), NF-κB p65, and cyclin D1, in ZD:Cox-2(-/-) forestomach/tongue preneoplasia and carcinomas, evidence for the activation of a RAGE-S100A8/A9 inflammatory pathway. Accumulation of p53 in these carcinomas indicated activation of additional inflammatory pathways. Zn-replenishment in ZD:Cox-2(-/-) mice reversed the inflammation and inhibited carcinogenesis. Thus, ZD activates alternative inflammation-associated cancer pathways that fuel tumor progression and bypass the antitumor effect of Cox-2 ablation. These findings have important clinical implications, as combination cancer therapy that includes Zn may improve efficacy.


UCbase 2.0: ultraconserved sequences database (2014 update).

  • Vincenzo Lomonaco‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2014‎

UCbase 2.0 (http://ucbase.unimore.it) is an update, extension and evolution of UCbase, a Web tool dedicated to the analysis of ultraconserved sequences (UCRs). UCRs are 481 sequences >200 bases sharing 100% identity among human, mouse and rat genomes. They are frequently located in genomic regions known to be involved in cancer or differentially expressed in human leukemias and carcinomas. UCbase 2.0 is a platform-independent Web resource that includes the updated version of the human genome annotation (hg19), information linking disorders to chromosomal coordinates based on the Systematized Nomenclature of Medicine classification, a query tool to search for Single Nucleotide Polymorphisms (SNPs) and a new text box to directly interrogate the database using a MySQL interface. To facilitate the interactive visual interpretation of UCR chromosomal positioning, UCbase 2.0 now includes a graph visualization interface directly linked to UCSC genome browser. Database URL: http://ucbase.unimore.it.


Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia.

  • Louise Y Fong‎ et al.
  • Oncotarget‎
  • 2017‎

Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P < 0.0001), indicating aerobic glycolysis (the "Warburg effect"), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zn-deficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention.


UCbase & miRfunc: a database of ultraconserved sequences and microRNA function.

  • Cristian Taccioli‎ et al.
  • Nucleic acids research‎
  • 2009‎

Four hundred and eighty-one ultraconserved sequences (UCRs) longer than 200 bases were discovered in the genomes of human, mouse and rat. These are DNA sequences showing 100% identity among the three species. UCRs are frequently located at genomic regions involved in cancer, differentially expressed in human leukemias and carcinomas and in some instances regulated by microRNAs (miRNAs). Here we present UCbase & miRfunc, the first database which provides ultraconserved sequences data and shows miRNA function. Also, it links UCRs and miRNAs with the related human disorders and genomic properties. The current release contains over 2000 sequences from three species (human, mouse and rat). As a web application, UCbase & miRfunc is platform independent and it is accessible at http://microrna.osu.edu/.UCbase4.


miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation.

  • Michela Garofalo‎ et al.
  • Cancer cell‎
  • 2009‎

Lung and liver cancers are among the most deadly types of cancer. Despite improvements in treatment over the past few decades, patient survival remains poor, underlining the need for development of targeted therapies. MicroRNAs represent a class of small RNAs frequently deregulated in human malignancies. We now report that miR-221&222 are overexpressed in aggressive non-small cell lung cancer and hepatocarcinoma cells, as compared with less invasive and/or normal lung and liver cells. We show that miR-221&222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and enhance cellular migration through the activation of the AKT pathway and metallopeptidases. Finally, we demonstrate that the MET oncogene is involved in miR-221&222 activation through the c-Jun transcription factor.


A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease.

  • Fabio Macciardi‎ et al.
  • GeroScience‎
  • 2022‎

Recent reports have suggested that the reactivation of otherwise transcriptionally silent transposable elements (TEs) might induce brain degeneration, either by dysregulating the expression of genes and pathways implicated in cognitive decline and dementia or through the induction of immune-mediated neuroinflammation resulting in the elimination of neural and glial cells. In the work we present here, we test the hypothesis that differentially expressed TEs in blood could be used as biomarkers of cognitive decline and development of AD. To this aim, we used a sample of aging subjects (age > 70) that developed late-onset Alzheimer's disease (LOAD) over a relatively short period of time (12-48 months), for which blood was available before and after their phenoconversion, and a group of cognitive stable subjects as controls. We applied our developed and validated customized pipeline that allows the identification, characterization, and quantification of the differentially expressed (DE) TEs before and after the onset of manifest LOAD, through analyses of RNA-Seq data. We compared the level of DE TEs within more than 600,000 TE-mapping RNA transcripts from 25 individuals, whose specimens we obtained before and after their phenotypic conversion (phenoconversion) to LOAD, and discovered that 1790 TE transcripts showed significant expression differences between these two timepoints (logFC ± 1.5, logCMP > 5.3, nominal p value < 0.01). These DE transcripts mapped both over- and under-expressed TE elements. Occurring before the clinical phenoconversion, this TE storm features significant increases in DE transcripts of LINEs, LTRs, and SVAs, while those for SINEs are significantly depleted. These dysregulations end with signs of manifest LOAD. This set of highly DE transcripts generates a TE transcriptional profile that accurately discriminates the before and after phenoconversion states of these subjects. Our findings suggest that a storm of DE TEs occurs before phenoconversion from normal cognition to manifest LOAD in risk individuals compared to controls, and may provide useful blood-based biomarkers for heralding such a clinical transition, also suggesting that TEs can indeed participate in the complex process of neurodegeneration.


Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines.

  • Mariana Gallo‎ et al.
  • The FEBS journal‎
  • 2023‎

Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.


Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development.

  • Flavia Pichiorri‎ et al.
  • Cancer cell‎
  • 2010‎

In multiple myeloma (MM), an incurable B cell neoplasm, mutation or deletion of p53 is rarely detected at diagnosis. Using small-molecule inhibitors of MDM2, we provide evidence that miR-192, 194, and 215, which are downregulated in a subset of newly diagnosed MMs, can be transcriptionally activated by p53 and then modulate MDM2 expression. Furthermore, ectopic re-expression of these miRNAs in MM cells increases the therapeutic action of MDM2 inhibitors in vitro and in vivo by enhancing their p53-activating effects. In addition, miR-192 and 215 target the IGF pathway, preventing enhanced migration of plasma cells into bone marrow. The results suggest that these miRNAs are positive regulators of p53 and that their downregulation plays a key role in MM development.


miRNAs expression analysis in paired fresh/frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time pCR.

  • Dario de Biase‎ et al.
  • PloS one‎
  • 2012‎

miRNAs are small molecules involved in gene regulation. Each tissue shows a characteristic miRNAs epression profile that could be altered during neoplastic transformation. Glioblastoma is the most aggressive brain tumour of the adult with a high rate of mortality. Recognizing a specific pattern of miRNAs for GBM could provide further boost for target therapy. The availability of fresh tissue for brain specimens is often limited and for this reason the possibility of starting from formalin fixed and paraffin embedded tissue (FFPE) could very helpful even in miRNAs expression analysis. We analysed a panel of 19 miRNAs in 30 paired samples starting both from FFPE and Fresh/Frozen material. Our data revealed that there is a good correlation in results obtained from FFPE in comparison with those obtained analysing miRNAs extracted from Fresh/Frozen specimen. In the few cases with a not good correlation value we noticed that the discrepancy could be due to dissection performed in FFPE samples. To the best of our knowledge this is the first paper demonstrating that the results obtained in miRNAs analysis using Real-Time PCR starting from FFPE specimens of glioblastoma are comparable with those obtained in Fresh/Frozen samples.


GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGF{beta} effectors, Drosha and microRNAs with opposite oncogenic potentials.

  • Esmerina Tili‎ et al.
  • Nucleic acids research‎
  • 2010‎

MicroRNAs (miRNAs) are small regulatory RNAs targeting multiple effectors of cell homeostasis and development, whose malfunctions are associated with major pathologies such as cancer. Herein we show that GAM/ZFp/ZNF512B works within an intricate gene regulatory network involving cell-cycle regulators, TGFβ effectors and oncogenic miRNAs of the miR-17-92 cluster. Thus, GAM impairs the transcriptional activation of the miR-17-92 promoter by c-Myc, downregulates miR-17-92 miRNAs differentially, and limits the activation of genes responsive to TGFβ canonical pathway. In contrast, TGFβ decreases GAM transcripts levels while differentially upregulating miR-17-92 miRNAs. In turn, miR-17, miR-20a and miR-92a-1 target GAM transcripts, thus establishing a feedback autoregulatory loop. GAM transcripts are also targeted by miRNAs of the let-7 family. GAM downregulates Drosha, the main effector of miRNA maturation in the nucleus, and interacts with it in a RNA-dependent manner. Finally, GAM modulates the levels of E2F1 and Ras, and increases apoptosis while reducing cell proliferation. We propose that GAM represents a new kind of vertebrate regulator aimed at balancing the opposite effects of regulators of cell homeostasis by increasing the robustness of gene circuitries controlling cell proliferation, differentiation and development.


DNA sequence symmetries from randomness: the origin of the Chargaff's second parity rule.

  • Piero Fariselli‎ et al.
  • Briefings in bioinformatics‎
  • 2021‎

Most living organisms rely on double-stranded DNA (dsDNA) to store their genetic information and perpetuate themselves. This biological information has been considered as the main target of evolution. However, here we show that symmetries and patterns in the dsDNA sequence can emerge from the physical peculiarities of the dsDNA molecule itself and the maximum entropy principle alone, rather than from biological or environmental evolutionary pressure. The randomness justifies the human codon biases and context-dependent mutation patterns in human populations. Thus, the DNA 'exceptional symmetries,' emerged from the randomness, have to be taken into account when looking for the DNA encoded information. Our results suggest that the double helix energy constraints and, more generally, the physical properties of the dsDNA are the hard drivers of the overall DNA sequence architecture, whereas the selective biological processes act as soft drivers, which only under extraordinary circumstances overtake the overall entropy content of the genome.


Successful extraction of insect DNA from recent copal inclusions: limits and perspectives.

  • Alessandra Modi‎ et al.
  • Scientific reports‎
  • 2021‎

Insects entombed in copal, the sub-fossilized resin precursor of amber, represent a potential source of genetic data for extinct and extant, but endangered or elusive, species. Despite several studies demonstrated that it is not possible to recover endogenous DNA from insect inclusions, the preservation of biomolecules in fossilized resins samples is still under debate. In this study, we tested the possibility of obtaining endogenous ancient DNA (aDNA) molecules from insects preserved in copal, applying experimental protocols specifically designed for aDNA recovery. We were able to extract endogenous DNA molecules from one of the two samples analyzed, and to identify the taxonomic status of the specimen. Even if the sample was found well protected from external contaminants, the recovered DNA was low concentrated and extremely degraded, compared to the sample age. We conclude that it is possible to obtain genomic data from resin-entombed organisms, although we discourage aDNA analysis because of the destructive method of extraction protocols and the non-reproducibility of the results.


GMIEC: a shiny application for the identification of gene-targeted drugs for precision medicine.

  • Guidantonio Malagoli Tagliazucchi‎ et al.
  • BMC genomics‎
  • 2020‎

Precision medicine is a medical approach that takes into account individual genetic variability and often requires Next Generation Sequencing data in order to predict new treatments. Here we present GMIEC, Genomic Modules Identification et Characterization for genomics medicine, an application that is able to identify specific drugs at the level of single patient integrating multi-omics data such as RNA-sequencing, copy-number variation, methylation, Chromatin Immuno-Precipitation and Exome/Whole Genome sequencing. It is also possible to include clinical data related to each patient. GMIEC has been developed as a web-based R-Shiny platform and gives as output a table easy to use and explore.


Inhibition of the lncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells.

  • Carlo M Bergamini‎ et al.
  • Non-coding RNA‎
  • 2021‎

Long non-coding RNAs are nucleotide molecules that regulate transcription in numerous cellular processes and are related to the occurrence of many diseases, including cancer. In this regard, we recently discovered a polyadenylated long non-coding RNA (named TG2-lncRNA) encoded within the first intron of the Transglutaminase type 2 gene (TGM2), which is related to tumour proliferation in human cancer cell lines. To better characterize this new biological player, we investigated the effects of its suppression in MCF-7 breast cancer cells, using siRNA treatment and RNA-sequencing. In this way, we found modifications in several networks associated to biological functions relevant for tumorigenesis (apoptosis, chronic inflammation, angiogenesis, immunomodulation, cell mobility, and epithelial-mesenchymal transition) that were originally attributed only to Transglutaminase type 2 protein but that could be regulated also by TG2-lncRNA. Moreover, our experiments strongly suggest the ability of TG2-lncRNA to directly interact with important transcription factors, such as RXRα and TP53, paving the way for several regulatory loops that can potentially influence the phenotypic behaviour of MCF-7 cells. These considerations imply the need to further investigate the relative relevance of the TG2 protein itself and/or other gene products as key regulators in the organization of breast cancer program.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: