Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

Cerebral Cortical Thickness in Chronic Pain Due to Knee Osteoarthritis: The Effect of Pain Duration and Pain Sensitization.

  • Hamza M Alshuft‎ et al.
  • PloS one‎
  • 2016‎

This study investigates associations between cortical thickness and pain duration, and central sensitization as markers of pain progression in painful knee osteoarthritis.


Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

  • Matthew Grech-Sollars‎ et al.
  • NMR in biomedicine‎
  • 2015‎

The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials.


Granulocyte-Macrophage Colony-Stimulating Factor as a Therapeutic Target in Multiple Sclerosis.

  • Jehan Aram‎ et al.
  • Neurology and therapy‎
  • 2019‎

Multiple sclerosis is an inflammatory neurodegenerative disease of the central nervous system (CNS) and the most frequent cause of non-traumatic disability in adults in the Western world. Currently, several drugs have been approved for the treatment of multiple sclerosis. While the newer drugs are more effective, they have less favourable safety profiles. Thus, there is a need to identify new targets for effective and safe therapies, particularly in patients with progressive disease for whom no treatments are available. One such target is granulocyte-macrophage colony-stimulating factor (GM-CSF) or its receptor. In this article we review data on the potential role of GM-CSF and GM-CSF inhibition in MS. We discuss the expression and function of GM-CSF and its receptor in the CNS, as well as data from animal studies and clinical trials in MS.


Coordinate based meta-analysis of motor functional imaging in Parkinson's: disease-specific patterns and modulation by dopamine replacement and deep brain stimulation.

  • Yue Xing‎ et al.
  • Brain imaging and behavior‎
  • 2020‎

To investigate factors affecting the pattern of motor brain activation reported in people with Parkinson's (PwP), aiming to differentiate disease-specific features from treatment effects.


Parkinson's disease related signal change in the nigrosomes 1-5 and the substantia nigra using T2* weighted 7T MRI.

  • Stefan Theodor Schwarz‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Improved markers for the progression of Parkinson's disease (PD) are required. Previous work has proven that iron dependent MRI scans can detect the largest Nigrosome (N1) within the substantia nigra (SN) pars compacta and changes in PD. Histopathological studies have shown that N1 is particularly affected in early PD whereas the other nigrosomes (N2-N5) and the surrounding iron-rich SN are affected later. In this study we aimed to determine whether MRI can detect the smaller nigrosomes (N2-N5) and whether graded signal alterations can be detected on T2*-weighted MRI at different disease stages consistent with histopathological changes. An observational prospective study was performed within the research imaging centre at the University of Nottingham, UK. Altogether 26 individuals with confirmed PD (median Hoehn&Yahr stage = 1, Unified PD Rating Scale [UPDRS] = 12.5) and 15 healthy controls participated. High resolution T2*weighted 7T MRI of the brain was performed and visibility of N1-N5 within the SN was qualitatively rated. Normalised T2*weighted signal intensities in manually segmented N1-N5 regions and iron-rich SN were calculated. We performed group comparisons and correlations with severity based on UPDRS. Qualitative measures were a nigrosome visibility score and a confidence score for identification. Quantitative measures were T2*weighted contrast of N1-5 and iron-rich SN relative to white matter. We found that visual assessment of the SN for N1-N5 revealed normal range visibility scores in 14 of 15 controls. N1 was identified with the highest confidence and visibility was in abnormal range in all 26 PD patients. The other nigrosomes were less well visible and less confidently identified. There was a larger PD induced signal reduction in all nigrosomes than in the iron-rich SN (median signal difference N1-5 PD compared to controls: 19.4% [IQR = 24%], iron-rich SN 11% [IQR = 24%, p = 0.017]). The largest PD induced signal reduction was in N1: 37.2% [IQR = 19%] which inversely correlated with UPDRS in PD (R2 = 0.19). All nigrosomes can be detected using 7T MRI, and PD induced T2*weighted signal reduction was greatest in the nigrosomes (especially N1). The graded T2*weighted signal alterations in the nigrosomes match previously described differential histopathological effects of PD. N1 was identified with the highest confidence and T2*weighted signal in N1 correlated with UPDRS confirming N1 as the most promising SN marker of PD pathology.


Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T 1 H-MR spectroscopy-A multi-center study.

  • Niloufar Zarinabad‎ et al.
  • Magnetic resonance in medicine‎
  • 2018‎

3T magnetic resonance scanners have boosted clinical application of 1 H-MR spectroscopy (MRS) by offering an improved signal-to-noise ratio and increased spectral resolution, thereby identifying more metabolites and extending the range of metabolic information. Spectroscopic data from clinical 1.5T MR scanners has been shown to discriminate between pediatric brain tumors by applying machine learning techniques to further aid diagnosis. The purpose of this multi-center study was to investigate the discriminative potential of metabolite profiles obtained from 3T scanners in classifying pediatric brain tumors.


Neural networks of response shifting: influence of task speed and stimulus material.

  • Rainer Loose‎ et al.
  • Brain research‎
  • 2006‎

Functional magnetic resonance imaging (fMRI) was used in 14 healthy subjects to measure brain activation, while response shifting was performed. In the activation phase, subjects were asked to shift their attention between two different types of visually presented stimuli. In the baseline phase, subjects were required to attend to one stimulus type only. Subjects responded by pressing a left or right key according to the side of presentation of the target stimuli. In a verbal task, subjects were required to switch between letters and numbers. In a figural task, subjects reacted to round and square shapes. Stimuli were presented for 750 or 1500 ms. Response shifting revealed significantly increased activation compared to non-switching in the bilateral superior parietal cortex, right occipital cortex, left inferior frontal cortex, left and right striatum, and bilateral dorsolateral prefrontal cortex (DLPFC). Superior parietal and occipital cortex activation may be due to spatial analysis during response shifting. Subvocal rehearsal of the task instructions may have led to activation in the left inferior frontal cortex. Activation in the striatum was related to prefrontal activation and may represent the association between basal ganglia and prefrontal activation during executive control. However, the most important brain region involved in the execution of response shifting was the bilateral DLPFC. Higher task speed increased executive top-down attentional control and, therefore, significantly increased activity in the bilateral DLPFC. Brain activation did not differ significantly between verbal and figural stimulus material. This result suggests that brain activation in the present study illustrates the brain regions involved in the basic cognitive mechanisms of response shifting.


In vivo imaging markers of neurodegeneration of the substantia nigra.

  • Dorothee P Auer‎
  • Experimental gerontology‎
  • 2009‎

Non invasive detection and monitoring of substantia nigra degeneration is a long sought aim for neuroscientists, clinicians and pharmaceutical companies with an interest in Parkinson's disease (PD). Functional imaging techniques are established tools to assess the extent of striatal dopaminergic denervation that indirectly reflects nigral degeneration. They allow characterization of the dopaminergic denervation during the premotor phase of PD and have clinical value to establish the diagnosis in parkinsonism, but have proven to be unsatisfactory as surrogate markers in recent treatment trials. There is strong research interest in developing new imaging tests for nigral degeneration using a variety of structural brain imaging techniques. Nigral hyperechogenicity assessed by transcranial sonography emerges as a robust and low cost test to diagnose PD. Additionally, various advanced magnetic resonance imaging contrasts and high field magnetic resonance spectroscopy show promising sensitivity to nigral pathology in PD. Qualification of these emerging imaging tests against defined biomarker criteria is a complex and challenging task ahead. More systematic validation studies analogous to clinical trials are needed to meet the expectations and criteria defined by regulatory bodies before imaging biomarkers can be used as surrogate endpoints for neuroprotective or restorative trials.


Anticholinergic drugs and forebrain magnetic resonance imaging changes in cognitively normal people and those with mild cognitive impairment.

  • Dewen Meng‎ et al.
  • European journal of neurology‎
  • 2022‎

Anticholinergic (AC) medication use is associated with cognitive decline and dementia, which may be related to an AC-induced central hypocholinergic state, but the exact mechanisms remain to be understood. We aimed to further elucidate the putative link between AC drug prescription, cognition, and structural and functional impairment of the forebrain cholinergic nucleus basalis of Meynert (NBM).


Reduced Myelin Signal in Normal-appearing White Matter in Neuromyelitis Optica Measured by 7T Magnetic Resonance Imaging.

  • I-Jun Chou‎ et al.
  • Scientific reports‎
  • 2019‎

Whether the integrity of normal-appearing white matter (NAWM) is preserved in neuromyelitis optica spectrum disorders (NMOSD) is open to debate. To examine whether the tissue integrity of NAWM in NMOSD is compromised compared to that in healthy controls and patients with multiple sclerosis (MS), we prospectively enrolled 14 patients with NMOSD, 12 patients with MS, and 10 controls for clinical functional assessments and quantitative imaging, including T1 relaxation time (T1) and magnetization transfer ratio (MTR) at 7 Tesla. Cognitive performance on the Paced Auditory Serial Addition Test with a 3-second interstimulus interval (PASAT-3) was significantly lower in the NMOSD compared to the MS group (mean number of correct answers, 34.1 vs. 47.6; p = 0.006), but there were no differences in disease duration or disability. Histograms of T1 and MTR maps of NAWM demonstrated a decreased peak height in patients with NMOSD compared to the healthy controls, but not compared to patients with MS. Using 7T quantitative magnetic resonance imaging (MRI), this study showed that the NAWM in patients with NMOSD is abnormal, with reduced myelin signal; this was not previously observed using MRI at a lower field strength.


Iron Rims as an Imaging Biomarker in MS: A Systematic Mapping Review.

  • Amjad I AlTokhis‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2020‎

Multiple sclerosis (MS) is an autoimmune, inflammatory, demyelinating and degenerative disease of the central nervous system (CNS). To date, there is no definitive imaging biomarker for diagnosing MS. The current diagnostic criteria are mainly based on clinical relapses supported by the presence of white matter lesions (WMLs) on MRI. However, misdiagnosis of MS is still a significant clinical problem. The paramagnetic, iron rims (IRs) around white matter lesions have been proposed to be an imaging biomarker in MS. This study aimed to carry out a systematic mapping review to explore the detection of iron rim lesions (IRLs), on clinical MR scans, and describe the characteristics of IRLs presence in MS versus other MS-mimic disorders.


Ultra-high-field 7T MRI in Parkinson's disease: ready for clinical use?-a narrative review.

  • Thomas Welton‎ et al.
  • Quantitative imaging in medicine and surgery‎
  • 2023‎

The maturation of ultra-high-field magnetic resonance imaging (MRI) [≥7 Tesla (7T)] has improved our capability to depict and characterise brain structures efficiently, with better signal-to-noise ratio (SNR) and spatial resolution. We evaluated whether these improvements benefit the clinical detection and management of Parkinson's disease (PD).


Connectivity-guided intermittent theta burst versus repetitive transcranial magnetic stimulation for treatment-resistant depression: a randomized controlled trial.

  • Richard Morriss‎ et al.
  • Nature medicine‎
  • 2024‎

Disruption in reciprocal connectivity between the right anterior insula and the left dorsolateral prefrontal cortex is associated with depression and may be a target for neuromodulation. In a five-center, parallel, double-blind, randomized controlled trial we personalized resting-state functional magnetic resonance imaging neuronavigated connectivity-guided intermittent theta burst stimulation (cgiTBS) at a site based on effective connectivity from the right anterior insula to the left dorsolateral prefrontal cortex. We tested its efficacy in reducing the primary outcome depression symptoms measured by the GRID Hamilton Depression Rating Scale 17-item over 8, 16 and 26 weeks, compared with structural magnetic resonance imaging (MRI) neuronavigated repetitive transcranial magnetic stimulation (rTMS) delivered at the standard stimulation site (F3) in patients with 'treatment-resistant depression'. Participants were randomly assigned to 20 sessions over 4-6 weeks of either cgiTBS (n = 128) or rTMS (n = 127) with resting-state functional MRI at baseline and 16 weeks. Persistent decreases in depressive symptoms were seen over 26 weeks, with no differences between arms on the primary outcome GRID Hamilton Depression Rating Scale 17-item score (intention-to-treat adjusted mean, -0.31, 95% confidence interval (CI) -1.87, 1.24, P = 0.689). Two serious adverse events were possibly related to TMS (mania and psychosis). MRI-neuronavigated cgiTBS and rTMS were equally effective in patients with treatment-resistant depression over 26 weeks (trial registration no. ISRCTN19674644).


Cingulate GABA levels inversely correlate with the intensity of ongoing chronic knee osteoarthritis pain.

  • Diane Reckziegel‎ et al.
  • Molecular pain‎
  • 2016‎

This study aims to investigate the role of the mid-anterior cingulate cortex γ-aminobutyric acid levels in chronic nociceptive pain. The molecular mechanisms of pain chronification are not well understood. In fibromyalgia, low mid-anterior cingulate cortex γ-aminobutyric acid was associated with high pain suggesting a role of prefrontal disinhibition. We hypothesize that mid-anterior cingulate cortex GABAergic disinhibition may underpin chronic pain independent of the pain etiology and comorbid negative affect. Proton magnetic resonance spectra were acquired at 3T from the mid-anterior cingulate cortex in 20 patients with chronic painful knee osteoarthritis, and 19 healthy pain-free individuals using a point resolved spectroscopy sequence optimized for detection of γ-aminobutyric acid. Participants underwent questionnaires for negative affect (depression and anxiety) and psychophysical pain phenotyping.


Diffusion tensor imaging of nigral degeneration in Parkinson's disease: A region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis.

  • Stefan T Schwarz‎ et al.
  • NeuroImage. Clinical‎
  • 2013‎

There is increasing interest in developing a reliable, affordable and accessible disease biomarker of Parkinson's disease (PD) to facilitate disease modifying PD-trials. Imaging biomarkers using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can describe parameters such as fractional anisotropy (FA), mean diffusivity (MD) or apparent diffusion coefficient (ADC). These parameters, when measured in the substantia nigra (SN), have not only shown promising but also varying and controversial results. To clarify the potential diagnostic value of nigral DTI in PD and its dependency on selection of region-of-interest, we undertook a high resolution DTI study at 3 T. 59 subjects (32 PD patients, 27 age and sex matched healthy controls) were analysed using manual outlining of SN and substructures, and voxel-based analysis (VBA). We also performed a systematic literature review and meta-analysis to estimate the effect size (DES) of disease related nigral DTI changes. We found a regional increase in nigral mean diffusivity in PD (mean ± SD, PD 0.80 ± 0.10 vs. controls 0.73 ± 0.06 · 10(- 3) mm(2)/s, p = 0.002), but no difference using a voxel based approach. No significant disease effect was seen using meta-analysis of nigral MD changes (10 studies, DES = + 0.26, p = 0.17, I(2) = 30%). None of the nigral regional or voxel based analyses of this study showed altered fractional anisotropy. Meta-analysis of 11 studies on nigral FA changes revealed a significant PD induced FA decrease. There was, however, a very large variation in results (I(2) = 86%) comparing all studies. After exclusion of five studies with unusual high values of nigral FA in the control group, an acceptable heterogeneity was reached, but there was non-significant disease effect (DES = - 0.5, p = 0.22, I(2) = 28%). The small PD related nigral MD changes in conjunction with the negative findings on VBA and meta-analysis limit the usefulness of nigral MD measures as biomarker of Parkinson's disease. The negative results of nigral FA measurements at regional, sub-regional and voxel level in conjunction with the results of the meta-analysis of nigral FA changes question the stability and validity of this measure as a PD biomarker.


Pathway-based approaches to imaging genetics association studies: Wnt signaling, GSK3beta substrates and major depression.

  • Becky Inkster‎ et al.
  • NeuroImage‎
  • 2010‎

Several lines of evidence implicate glycogen synthase kinase 3 beta (GSK3beta) in mood disorders. We recently reported associations between GSK3beta polymorphisms and brain structural changes in patients with recurrent major depressive disorder (MDD). Here we provide supporting observations by showing that polymorphisms in additional genes encoding proteins directly related to GSK3beta biological functions are associated with similar regional grey matter (GM) volume changes in MDD patients. We tested specifically for associations with genetic variation in canonical Wnt signaling pathway genes and in genes that encode substrate proteins of GSK3beta. We applied a general linear model with non-stationary cluster-based inference to examine associations between polymorphisms and regional voxel-based morphometry GM volume differences in recurrent MDD patients (n=134) and in age-, gender-, and ethnicity-matched healthy controls (n=144) to test for genotype-by-MDD interactions. We observed associations for polymorphisms in 8/13 canonical Wnt pathway genes and 5/10 GSK3beta substrate genes, predominantly in the temporolateral and medial prefrontal cortices. Similar associations were not found for 100 unrelated polymorphisms tested. This work suggests that identifying SNPs related to genes that encode functionally-interacting proteins that modulate common anatomical regions offers a useful approach to increasing confidence in outcomes from imaging genetics association studies. This is of particular interest when replication datasets are not available. Our observations lend support to the hypothesis that polymorphisms in GSK3beta play a role in MDD susceptibility or expression, in part, by acting via the canonical Wnt signaling pathway and related substrates.


Serial MR diffusion to predict treatment response in high-grade pediatric brain tumors: a comparison of regional and voxel-based diffusion change metrics.

  • Daniel Rodriguez Gutierrez‎ et al.
  • Neuro-oncology‎
  • 2013‎

Assessment of treatment response by measuring tumor size is known to be a late and potentially confounded response index. Serial diffusion MRI has shown potential for allowing earlier and possibly more reliable response assessment in adult patients, with limited experience in clinical settings and in pediatric brain cancer. We present a retrospective study of clinical MRI data in children with high-grade brain tumors to assess and compare the values of several diffusion change metrics to predict treatment response.


Altered Nucleus Basalis Connectivity Predicts Treatment Response in Mild Cognitive Impairment.

  • Dewen Meng‎ et al.
  • Radiology‎
  • 2018‎

Purpose To determine whether functional connectivity (FC) mapping of nucleus basalis of Meynert (NBM) cholinergic network (hereafter, NBM FC) could provide a biomarker of central cholinergic deficits with predictive potential for response to cholinesterase inhibitor (ChEI) treatment. Materials and Methods The Alzheimer's Disease Neuroimaging Initiative (ADNI) was approved by the institutional review boards of all participating sites. All participants and their representatives gave written informed consent prior to data collection. NBM FC was examined in 33 healthy control participants, 102 patients with mild cognitive impairment (MCI), and 33 patients with AD by using resting-state functional MRI data from the ADNI database. NBM FC was compared between groups before and after 6 months of ChEI treatment in MCI. Associations between baseline NBM FC and baseline cognitive performance as well as cognitive outcomes after treatment were investigated. Results Compared with the healthy control group, NBM FC was decreased in patients with untreated MCI and increased in patients with AD treated with ChEI (corrected P ˂ .05). Global cognition (Alzheimer's Disease Assessment Scale-Cognitive subscale score) was associated with NBM FC (r = -0.349; P ˂ .001). NBM FC was higher 6 months after ChEI compared with before ChEI in treated MCI (corrected P ˂ .05), but did not change at 6 months in patients with untreated MCI (corrected P ˂ .05). Baseline NBM FC in MCI strongly predicted cognitive outcomes 6 months after ChEI (R2 = 0.458; P = .001). Conclusion Functional dissociation of the nucleus basalis of Meynert from a cortical network may explain the cognitive deficits in dementia and allow for the selection of individuals who are more likely to respond to cholinesterase inhibitors at early disease stages. © RSNA, 2018 Online supplemental material is available for this article.


Natalizumab Treatment of Relapsing Remitting Multiple Sclerosis Has No Long-Term Effects on the Proportion of Circulating Regulatory T Cells.

  • Radu Tanasescu‎ et al.
  • Neurology and therapy‎
  • 2023‎

Natalizumab (NTZ), a monoclonal antibody against the integrin α4β1 (VLA-4) found on activated T cells and B cells, blocks the interaction of this integrin with adhesion molecules of central nervous system (CNS) endothelial cells and lymphocyte migration through the blood-brain barrier, effectively preventing new lesion formation and relapses in multiple sclerosis (MS). Whether NTZ treatment has additional effects on the peripheral immune system cells, and how its actions compare with other MS disease-modifying treatments, have not been extensively investigated. In particular, its effect on the proportions of circulating regulatory T cells (Treg) is unclear.


Myoinositol CEST signal in animals with increased Iba-1 levels in response to an inflammatory challenge-Preliminary findings.

  • Maria Yanez Lopez‎ et al.
  • PloS one‎
  • 2019‎

Neuroinflammation plays an important role in the pathogenesis of a range of brain disorders. Non-invasive imaging of neuroinflammation is critical to help improve our understanding of the underlying disease mechanisms, monitor therapies and guide drug development. Generally, MRI lacks specificity to molecular imaging biomarkers, but molecular MR imaging based on chemical exchange saturation transfer (CEST) can potentially detect changes of myoinositol, a putative glial marker that may index neuroinflammation. In this pilot study we aimed to investigate, through validation with immunohistochemistry and in vivo magnetic resonance spectroscopy (MRS), whether CEST imaging can reflect the microglial response to a mild inflammatory challenge with lipopolysaccharide (LPS), in the APPSwe/ PS1 mouse model of Alzheimer's disease and wild type controls. The response to the immune challenge was variable and did not align with genotype. Animals with a strong response to LPS (Iba1+, n = 6) showed an increase in CEST contrast compared with those who did not (Iba1-, n = 6). Changes of myoinositol levels after LPS were not significant. We discuss the difficulties of this mild inflammatory model, the role of myoinositol as a glial biomarker, and the technical challenges of CEST imaging at 0.6ppm.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: