Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Deletion of Bax eliminates sex differences in the mouse forebrain.

  • Nancy G Forger‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2004‎

Several of the best-studied sex differences in the mammalian brain are ascribed to the hormonal control of cell death. This conclusion is based primarily on correlations between pyknotic cell counts in development and counts of mature neurons in adulthood; the molecular mechanisms of hormone-regulated, sexually dimorphic cell death are unknown. We asked whether Bax, a member of the Bcl-2 family of proteins that is required for cell death in many developing neurons, might be essential for sex differences in neuron number. We compared Bax knockout mice and their WT siblings, focusing on two regions of the mouse forebrain that show opposite patterns of sexual differentiation: the principal nucleus of the bed nucleus of the stria terminalis, in which males have more neurons than do females, and the anteroventral periventricular nucleus (AVPV), where females have more neurons overall and many more dopaminergic neurons than do males. Testosterone, or its metabolites, is responsible for the sex differences in both nuclei. A null mutation of the Bax gene completely eliminated sex differences in overall cell number in both the principal nucleus of the bed nucleus of the stria terminalis and AVPV. Thus, Bax-dependent cell death is required for sexual differentiation of cell number, regardless of whether testosterone decreases or increases cell death. In contrast, the sex difference in AVPV dopaminergic cell number, as measured by tyrosine hydroxylase immunohistochemistry, was not affected by Bax gene deletion, demonstrating heterogeneity of mechanisms controlling cell number within a single nucleus.


Age- and hormone-regulation of opioid peptides and synaptic proteins in the rat dorsal hippocampal formation.

  • Tanya J Williams‎ et al.
  • Brain research‎
  • 2011‎

Circulating estrogen levels and hippocampal-dependent cognitive functions decline with aging. Moreover, the responses of hippocampal synaptic structure to estrogens differ between aged and young rats. We recently reported that estrogens increase levels of post-synaptic proteins, including PSD-95, and opioid peptides leu-enkephalin and dynorphin in the hippocampus of young animals. However, the influence of ovarian hormones on synaptic protein and opioid peptide levels in the aging hippocampus is understudied. Here, young (3- to 5-month-old), middle-aged (9- to 12-month-old), and aged (about 22-month-old) female rats were ovariectomized and then, 4 weeks later, subcutaneously implanted with a silastic capsule containing vehicle or 17β-estradiol. After 48 h, rats were subcutaneously injected with progesterone or vehicle and sacrificed 1 day later. Coronal sections through the dorsal hippocampus were processed for quantitative peroxidase immunohistochemistry of leu-enkephalin, dynorphin, synaptophysin, and PSD-95. With age, females showed opposing changes in leu-enkephalin and dynorphin levels in the mossy fiber pathway, particularly within the hilus, and regionally specific changes in synaptic protein levels. 17β-estradiol, with or without progesterone, altered leu-enkephalin levels in the dentate gyrus and synaptophysin levels in the CA1 of young but not middle-aged or aged females. Additionally, 17β-estradiol decreased synaptophysin levels in the CA3 of middle-aged females. Our results support and extend previous findings indicating 17β-estradiol modulation of hippocampal opioid peptides and synaptic proteins while demonstrating regional and age-specific effects. Moreover, they lend credence to the "window of opportunity" hypothesis during which hormone replacement can modulate hippocampal structure and circuitry to improve cognitive outcomes.


Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries.

  • John Nguyen‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2011‎

The accumulation of small strokes has been linked to cognitive dysfunction. Although most animal models have focused on the impact of arteriole occlusions, clinical evidence indicates that venule occlusions may also be important. We used two-photon excited fluorescence microscopy to quantify changes in blood flow and vessel diameter in capillaries after occlusion of single ascending or surface cortical venules as a function of the connectivity between the measured capillary and the occluded venule. Clotting was induced by injuring the target vessel wall with femtosecond laser pulses. After an ascending venule (AV) occlusion, upstream capillaries showed decreases in blood flow speed, high rates of reversal in flow direction, and increases in vessel diameter. Surface venule occlusions produced similar effects, unless a collateral venule provided a new drain. Finally, we showed that AVs and penetrating arterioles have different nearest-neighbor spacing but capillaries branching from them have similar topology, which together predicted the severity and spatial extent of blood flow reduction after occlusion of either one. These results provide detailed insights into the widespread hemodynamic changes produced by cortical venule occlusions and may help elucidate the role of venule occlusions in the development of cognitive disorders and other brain diseases.


Ovarian steroids modulate leu-enkephalin levels and target leu-enkephalinergic profiles in the female hippocampal mossy fiber pathway.

  • Annelyn Torres-Reveron‎ et al.
  • Brain research‎
  • 2008‎

In the hippocampal formation (HF), the enkephalin opioids and estrogen are each known to modulate learning and cognitive performance relevant to drug abuse. Within the HF, leu-enkephalin (LENK) is most prominent in the mossy fiber (MF) pathway formed by the axons of dentate gyrus (DG) granule cells. To examine the influence of ovarian steroids on MF pathway LENK levels, we used quantitative light microscopic immunocytochemistry to evaluate LENK levels in normal cycling rats and in estrogen-treated ovariectomized rats. Rats in estrus had increased levels of LENK-immunoreactivity (ir) in the DG hilus compared to rats in diestrus or proestrus. Rats in estrus and proestrus had higher levels of LENK-ir in CA3a-c compared to rats in diestrus. Ovariectomized (OVX) rats 24 h (but not 6 or 72 h) after estradiol benzoate (EB; 10 microg) administration had increased LENK-ir in the DG hilus and CA3c. Electron microscopy showed a larger proportion of LENK-labeled small terminals and axons in the DG hilus compared to CA3 which may have contributed to region-specific changes in LENK-ir densities. Next we evaluated the subcellular relationships of estrogen receptor (ER) alpha, ERbeta and progestin receptor (PR) with LENK-labeled MF pathway profiles using dual-labeling electron microscopy. ERbeta-ir colocalized in some LENK-labeled MF terminals and smaller terminals while PR-ir was mostly in CA3 axons, some of which also showed colocalization with LENK. ERalpha-ir was in dendritic spines, but no colocalization with LENK-labeled profiles was observed. The present studies indicate that estrogen can modulate LENK in subregions of the MF pathway in a dose-and time-dependent manner. These effects might be triggered by direct activation of ERbeta or PR in LENK-containing terminals.


Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats.

  • Annelyn Torres-Reveron‎ et al.
  • Brain research bulletin‎
  • 2009‎

To mimic clinical treatment with methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), rat pups were injected with MPH (5 mg/kg, i.p.) or placebo twice daily during their nocturnal active phase from postnatal day (PND) 7-35. Thirty-nine days after the last MPH administration (PND 76), four litters of rats experienced stressful conditions during the 2003 New York City blackout. MPH-treated rats that endured the blackout lost more weight and regained it at a slower pace than controls (p<0.05; N=7-11 per group). Furthermore, MPH-treated rats had elevated systolic arterial blood pressure (from 115.6+/-1.2 to 126+/-1.8 mmHg; p<0.05), assessed on PND 130 by tail cuff plethysmography. Immunocytochemical studies of transmitter systems in the brain demonstrated rearrangements of catecholamine and neuropeptide Y fibers in select brain regions at PND 135, which did not differ between blackout and control groups. However, MPH-treated rats that endured the blackout had more ectopic granule cells in the hilus of the dorsal hippocampal dentate gyrus compared to controls at PND 135 (p<0.05; N=6 per group). These findings indicate that early postnatal exposure to high therapeutic doses of MPH can have long lasting effects on the plasticity of select brain regions and can induce changes in the reactivity to stress that persist into adulthood.


Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure.

  • Jose Marques-Lopes‎ et al.
  • Neuroendocrinology‎
  • 2017‎

Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.


Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress.

  • Sanoara Mazid‎ et al.
  • Neurobiology of stress‎
  • 2016‎

Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobilization stress (AIS) or one-day after chronic immobilization stress (CIS), the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG) and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar interneuron dendrites one-hour after oxycodone (3 mg/kg, I.P.) administration compared to saline administration in CIS females. These data indicate that DORs redistribute within CA3 pyramidal cells and dentate hilar GABAergic interneurons in a sexually dimorphic manner that would promote activation and drug related learning in males after AIS and in females after CIS.


Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury.

  • Josef Anrather‎ et al.
  • PloS one‎
  • 2011‎

Cyclooxygenases (COX) are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2) synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA) induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2) synthesis (10 minutes after NMDA), while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA). Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2) synthesis is dependent on P2X7 receptors, extracellular Ca(2+) and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2) synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2) receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2) receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2) production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain injury.


Progesterone receptor expression in cajal-retzius cells of the developing rat dentate gyrus: Potential role in hippocampus-dependent memory.

  • Andrew J Newell‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

The development of medial temporal lobe circuits is critical for subsequent learning and memory functions later in life. The present study reports the expression of progesterone receptor (PR), a powerful transcription factor of the nuclear steroid receptor superfamily, in Cajal-Retzius cells of the molecular layer of the dentate gyrus of rats. PR was transiently expressed from the day of birth through postnatal day 21, but was absent thereafter. Although PR immunoreactive (PR-ir) cells did not clearly express typical markers of mature neurons, they possessed an ultrastructural morphology consistent with neurons. PRir cells did not express markers for GABAergic neurons, neuronal precursor cells, nor radial glia. However, virtually all PR cells co-expressed the calcium binding protein, calretinin, and the glycoprotein, reelin, both reliable markers for Cajal-Retzius neurons, a transient population of developmentally critical pioneer neurons that guide synaptogenesis of perforant path afferents and histogenesis of the dentate gyrus. Indeed, inhibition of PR activity during the first two weeks of life impaired adult performance on both the novel object recognition and object placement memory tasks, two behavioral tasks hypothesized to describe facets of episodic-like memory in rodents. These findings suggest that PR plays an unexplored and important role in the development of hippocampal circuitry and adult memory function.


Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer's disease mouse models.

  • Jean C Cruz Hernández‎ et al.
  • Nature neuroscience‎
  • 2019‎

Cerebral blood flow (CBF) reductions in Alzheimer's disease patients and related mouse models have been recognized for decades, but the underlying mechanisms and resulting consequences for Alzheimer's disease pathogenesis remain poorly understood. In APP/PS1 and 5xFAD mice we found that an increased number of cortical capillaries had stalled blood flow as compared to in wild-type animals, largely due to neutrophils that had adhered in capillary segments and blocked blood flow. Administration of antibodies against the neutrophil marker Ly6G reduced the number of stalled capillaries, leading to both an immediate increase in CBF and rapidly improved performance in spatial and working memory tasks. This study identified a previously uncharacterized cellular mechanism that explains the majority of the CBF reduction seen in two mouse models of Alzheimer's disease and demonstrated that improving CBF rapidly enhanced short-term memory function. Restoring cerebral perfusion by preventing neutrophil adhesion may provide a strategy for improving cognition in Alzheimer's disease patients.


Cerebral ischemia induces the aggregation of proteins linked to neurodegenerative diseases.

  • Anja Kahl‎ et al.
  • Scientific reports‎
  • 2018‎

Protein aggregation critically affects cell viability in neurodegenerative diseases, but whether this also occurs in ischemic brain injury remains elusive. Prior studies report the post-ischemic aggregation of ubiquitin, small ubiquitin-related modifier (SUMO) and ribosomes, however whether other proteins are also affected is unknown. Here we employed a proteomic approach to identify the insoluble, aggregated proteome after cerebral ischemia. Mice underwent transient middle cerebral artery occlusion or sham-surgery. After 1-hour reperfusion, prior to apparent brain injury, mice were sacrificed and detergent-insoluble proteins were obtained and identified by nanoLC-MS/MS. Naturally existing insoluble proteins were determined in sham controls and aggregated proteins after cerebral ischemia/reperfusion were identified. Selected aggregated proteins found by proteomics were biochemically verified and aggregation propensities were studied during ischemia with or without reperfusion. We found that ischemia/reperfusion induces the aggregation of RNA-binding and heat-shock proteins, ubiquitin, SUMO and other proteins involved in cell signalling. RNA-binding proteins constitute the largest group of aggregating proteins in ischemia. These include TDP43, FUS, hnRNPA1, PSF/SFPQ and p54/NONO, all of which have been linked to neurodegeneration associated with amyotrophic lateral sclerosis and frontotemporal dementia. The aggregation of neurodegeneration-related disease proteins in cerebral ischemia unveils a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke.


Sex and age influence gonadal steroid hormone receptor distributions relative to estrogen receptor β-containing neurons in the mouse hypothalamic paraventricular nucleus.

  • Natalina H Contoreggi‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

Within the hypothalamic paraventricular nucleus (PVN), estrogen receptor (ER) β and other gonadal hormone receptors play a role in central cardiovascular processes. However, the influence of sex and age on the cellular and subcellular relationships of ERβ with ERα, G-protein ER (GPER1), as well as progestin and androgen receptors (PR and AR) in the PVN is uncertain. In young (2- to 3-month-old) females and males, ERβ-enhanced green fluorescent protein (EGFP) containing neurons were approximately four times greater than ERα-labeled and PR-labeled nuclei in the PVN. In subdivisions of the PVN, young females, compared to males, had: (1) more ERβ-EGFP neurons in neuroendocrine rostral regions; (2) fewer ERα-labeled nuclei in neuroendocrine and autonomic projecting medial subregions; and (3) more ERα-labeled nuclei in an autonomic projecting caudal region. In contrast, young males, compared to females, had approximately 20 times more AR-labeled nuclei, which often colocalized with ERβ-EGFP in neuroendocrine (approximately 70%) and autonomic (approximately 50%) projecting subregions. Ultrastructurally, in soma and dendrites, PVN ERβ-EGFP colocalized primarily with extranuclear AR (approximately 85% soma) and GPER1 (approximately 70% soma). Aged (12- to 24-month-old) males had more ERβ-EGFP neurons in a rostral neuroendocrine subregion compared to aged females and females with accelerated ovarian failure (AOF) and in a caudal autonomic subregion compared to post-AOF females. Late-aged (18- to 24-month-old) females compared to early-aged (12- to 14-month-old) females and AOF females had fewer AR-labeled nuclei in neuroendrocrine and autonomic projecting subregions. These findings indicate that gonadal steroids may directly and indirectly influence PVN neurons via nuclear and extranuclear gonadal hormone receptors in a sex-specific manner.


Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration.

  • Laibaik Park‎ et al.
  • Nature neuroscience‎
  • 2020‎

Cerebrovascular abnormalities have emerged as a preclinical manifestation of Alzheimer's disease and frontotemporal dementia, diseases characterized by the accumulation of hyperphosphorylated forms of the microtubule-associated protein tau. However, it is unclear whether tau contributes to these neurovascular alterations independent of neurodegeneration. We report that mice expressing mutated tau exhibit a selective suppression of neural activity-induced cerebral blood flow increases that precedes tau pathology and cognitive impairment. This dysfunction is attributable to a reduced vasodilatation of intracerebral arterioles and is reversible by reducing tau production. Mechanistically, the failure of neurovascular coupling involves a tau-induced dissociation of neuronal nitric oxide synthase (nNOS) from postsynaptic density 95 (PSD95) and a reduced production of the potent vasodilator nitric oxide during glutamatergic synaptic activity. These data identify glutamatergic signaling dysfunction and nitric oxide deficiency as yet-undescribed early manifestations of tau pathobiology, independent of neurodegeneration, and provide a mechanism for the neurovascular alterations observed in the preclinical stages of tauopathies.


The risk of arterial thromboembolic events after cancer diagnosis.

  • Babak B Navi‎ et al.
  • Research and practice in thrombosis and haemostasis‎
  • 2019‎

Retrospective studies have reported an association between cancer and arterial thromboembolic event (ATE) risk.


AGO CLIP Reveals an Activated Network for Acute Regulation of Brain Glutamate Homeostasis in Ischemic Stroke.

  • Mariko Kobayashi‎ et al.
  • Cell reports‎
  • 2019‎

Post-transcriptional regulation by microRNAs (miRNAs) is essential for complex molecular responses to physiological insult and disease. Although many disease-associated miRNAs are known, their global targets and culminating network effects on pathophysiology remain poorly understood. We applied Argonaute (AGO) crosslinking immunoprecipitation (CLIP) to systematically elucidate altered miRNA-target interactions in brain following ischemia and reperfusion (I/R) injury. Among 1,190 interactions identified, the most prominent was the cumulative loss of target regulation by miR-29 family members. Integration of translational and time-course RNA profiles revealed a dynamic mode of miR-29 target de-regulation, led by acute translational activation and a later increase in RNA levels, allowing rapid proteomic changes to take effect. These functional regulatory events rely on canonical and non-canonical miR-29 binding and engage glutamate reuptake signals, such as glial glutamate transporter (GLT-1), to control local glutamate levels. These results uncover a miRNA target network that acts acutely to maintain brain homeostasis after ischemic stroke.


Effects of estrogen and aging on synaptic morphology and distribution of phosphorylated Tyr1472 NR2B in the female rat hippocampus.

  • Elizabeth M Waters‎ et al.
  • Neurobiology of aging‎
  • 2019‎

Age and estrogens may impact the mobility of N-methyl-D-aspartate receptors (NMDARs) in hippocampal synapses. Here, we used serial section immunogold electron microscopy to examine whether phosphorylated tyrosine 1472 NR2B (pY1472), which is involved in the surface expression of NMDARs, is altered in the dorsal hippocampus of young (3-4 months old) and aged (∼24 months old) ovariectomized rats treated with 17β-estradiol or vehicle for 2 days. The number of gold particles labeling pY1472 was higher in presynaptic and postsynaptic compartments of aged rats with low estradiol (vehicle-treated) compared to other groups. In terminals, pY1472 levels were elevated in aged rats but reduced by estradiol treatment to levels seen in young rats. Conversely, the mitochondria number was lower in aged females but was restored to young levels by estradiol. In the postsynaptic density and dendritic spines, estradiol reduced pY1472 in young and aged rats. As phosphorylation at Y1472 blocks NR2B endocytosis, reduction of pY1472 by estradiol suggests another mechanism through which estrogen enhances synaptic plasticity by altering localization of NMDAR subunits within synapses.


Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause.

  • Teresa A Milner‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor β (ERβ) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause. It was found that administering ERβ agonists suppressed elevated blood pressure in a model of neurogenic hypertension induced by angiotensin II (AngII) in peri-AOF, but not in age-matched male mice. It was also found that ERβ agonist administration in peri-AOF females, but not males, suppressed the heightened NMDAR signaling and reactive oxygen production in ERβ neurons in the hypothalamic paraventricular nucleus (PVN), a critical neural regulator of blood pressure. It was further shown that deleting ERβ in the PVN of gonadally intact females produced a phenotype marked by a sensitivity to AngII hypertension. These results suggest that ERβ signaling in the PVN plays an important role in blood pressure regulation in female mice and contributes to hypertension susceptibility in females at an early stage of ovarian failure comparable to human perimenopause.


Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress.

  • Ken Uekawa‎ et al.
  • Research square‎
  • 2023‎

Background: Cerebral amyloid angiopathy (CAA) is a devastating condition common in patients with Alzheimer's disease but also observed in the general population. Vascular oxidative stress and neurovascular dysfunction have been implicated in CAA but the cellular source of reactive oxygen species (ROS) and related signaling mechanisms remain unclear. We tested the hypothesis that brain border-associated macrophages (BAM), yolk sac-derived myeloid cells closely apposed to parenchymal and leptomeningeal blood vessels, are the source of radicals through the Aβ-binding innate immunity receptor CD36, leading to neurovascular dysfunction, CAA, and cognitive impairment. Methods: Tg2576 mice and WT littermates were transplanted with CD36 -/- or CD36 +/+ bone marrow at 12-month of age and tested at 15 months. This approach enables the repopulation of perivascular and leptomeningeal compartments with CD36 -/- BAM. Neurovascular function was tested in anesthetized mice equipped with a cranial window in which cerebral blood flow was monitored by laser-Doppler flowmetry. Amyloid pathology and cognitive function were also examined. Results: The increase in blood flow evoked by whisker stimulation (functional hyperemia) or by endothelial and smooth muscle vasoactivity was markedly attenuated in WT®Tg2576 chimeras but was fully restored in CD36 -/- ®Tg2576 chimeras, in which BAM ROS production was suppressed. CAA-associated Aβ 1-40 , but not Aβ 1-42 , was reduced in CD36 -/- ®Tg2576 chimeras. Similarly, CAA, but not parenchymal plaques, was reduced in CD36 -/- ®Tg2576 chimeras. These beneficial vascular effects were associated with cognitive improvement. Finally, CD36 -/- mice were able to more efficiently clear exogenous Aβ 1-40 injected into the neocortex or the striatum. Conclusions: CD36 deletion in BAM suppresses ROS production and rescues the neurovascular dysfunction and damage induced by Aβ. CD36 deletion in BAM also reduced brain Aβ 1-40 and ameliorated CAA without affecting parenchyma plaques. Lack of CD36 enhanced the vascular clearance of exogenous Aβ. Restoration of neurovascular function and attenuation of CAA resulted in a near complete rescue of cognitive function. Collectively, these data implicate CNS BAM in the pathogenesis of CAA and raise the possibility that targeting BAM CD36 is beneficial in CAA and other conditions associated with vascular Aβ deposition and damage.


Immune compartments at the brain's borders in health and neurovascular diseases.

  • Jennifer E Goertz‎ et al.
  • Seminars in immunopathology‎
  • 2023‎

Recent evidence implicates cranial border immune compartments in the meninges, choroid plexus, circumventricular organs, and skull bone marrow in several neuroinflammatory and neoplastic diseases. Their pathogenic importance has also been described for cardiovascular diseases such as hypertension and stroke. In this review, we will examine the cellular composition of these cranial border immune niches, the potential pathways through which they might interact, and the evidence linking them to cardiovascular disease.


Alterations in the subcellular distribution of NADPH oxidase p47(phox) in hypothalamic paraventricular neurons following slow-pressor angiotensin II hypertension in female mice with accelerated ovarian failure.

  • Tracey A Van Kempen‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

At younger ages, women have a lower risk for hypertension than men, but this sexual dimorphism declines with the onset of menopause. These differences are paralleled in rodents following "slow-pressor" angiotensin II (AngII) administration: young male and aged female mice, but not young females, develop hypertension. There is also an established sexual dimorphism both in the cardiovascular response to the neurohypophyseal hormone arginine vasopressin (AVP) and in the expression of oxidative stress. We examined the relationship between AngII-mediated hypertension and the cellular distribution of the superoxide generating NADPH oxidase (NOX) in AVP-expressing hypothalamic paraventricular nucleus (PVN) neurons in "menopausal" female mice. Dual-labeling immunoelectron microscopy was used to determine whether the subcellular distribution of the organizer/adapter NOX p47(phox) subunit is altered in PVN dendrites following AngII administered (14 days) during the "postmenopausal" stage of accelerated ovarian failure (AOF) in young female mice treated with 4-vinylcyclohexene diepoxide. Slow-pressor AngII elevated blood pressure in AOF females and induced a significant increase in near plasmalemmal p47(phox) and a decrease in cytoplasmic p47(phox) in PVN AVP dendrites. These changes are the opposite of those observed in AngII-induced hypertensive male mice (Coleman et al. [2013] J. Neurosci. 33:4308-4316) and may be ascribed in part to baseline differences between young females and males in the near plasmalemmal p47(phox) on AVP dendrites seen in the present study. These findings highlight fundamental differences in the neural substrates of oxidative stress in the PVN associated with AngII hypertension in postmenopausal females compared with males. J. Comp. Neurol. 524:2251-2265, 2016. © 2015 Wiley Periodicals, Inc.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: