Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

ErbB-3 activation by NRG-1β sustains growth and promotes vemurafenib resistance in BRAF-V600E colon cancer stem cells (CSCs).

  • Pramudita R Prasetyanti‎ et al.
  • Oncotarget‎
  • 2015‎

Approximately 5-10% of metastatic colorectal cancers harbor a BRAF-V600E mutation, which is correlated with resistance to EGFR-targeted therapies and worse clinical outcome. Vice versa, targeted inhibition of BRAF-V600E with the selective inhibitor PLX 4032 (Vemurafenib) is severely limited due to feedback re-activation of EGFR in these tumors. Mounting evidence indicates that upregulation of the ErbB-3 signaling axis may occur in response to several targeted therapeutics, including Vemurafenib, and NRG-1β-dependent re-activation of the PI3K/AKT survival pathway has been associated with therapy resistance.Here we show that colon CSCs express, next to EGFR and ErbB-2, also significant amounts of ErbB-3 on their membrane. This expression is functional as NRG-1β strongly induces AKT/PKB and ERK phosphorylation, cell proliferation, clonogenic growth and promotes resistance to Vemurafenib in BRAF-V600E mutant colon CSCs. This resistance was completely dependent on ErbB-3 expression, as evidenced by knockdown of ErbB-3. More importantly, resistance could be alleviated with therapeutic antibody blocking ErbB-3 activation, which impaired NRG-1β-driven AKT/PKB and ERK activation, clonogenic growth in vitro and tumor growth in xenograft models. In conclusion, our findings suggest that targeting ErbB-3 receptors could represent an effective therapeutic approach in BRAF-V600E mutant colon cancer.


High nuclear level of Vav1 is a positive prognostic factor in early invasive breast tumors: a role in modulating genes related to the efficiency of metastatic process.

  • Silvia Grassilli‎ et al.
  • Oncotarget‎
  • 2014‎

Vav1 is one of the signalling proteins normally restricted to hematopoietic cells that results ectopically expressed in solid tumors, including breast cancer. By immunohistochemical analysis on TMAs containing invasive breast tumor from patients without lymph node involvement, we have found that Vav1 is expressed in almost all investigated cancers and shows a peculiar localization inside the nucleus of tumor cells. High amounts of nuclear Vav1 are positively correlated with low incidence of relapse, regardless phenotype and molecular subtype of breast neoplasia. In particular, Kaplan-Meier plots showed an elevated risk of distant metastasis in patients with low Vav1 expression compared with patients with high Vav1 expression in their tumors. Experiments performed with breast tumor-derived cells indicated that Vav1 negatively modulates their invasiveness in vitro and their metastatic efficiency in vivo, possibly by affecting the expression of genes involved in invasion and/or metastasis of breast tumors. Since the high heterogeneity of breast tumors makes difficult to predict the evolution of early breast neoplasias, the evaluation of nuclear Vav1 levels may help in the characterization and management of early breast cancer patients. In particular, Vav1 may serve as a prognostic biomarker and a target for new therapies aimed to prevent breast cancer progression.


Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol.

  • Annalisa Bruno‎ et al.
  • European journal of pharmacology‎
  • 2005‎

The thermophilic blue-green alga ETS-05 colonises the therapeutic thermal muds of Abano and Montegrotto, Italy. Following the isolation, purification and identification of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol from ETS-05, we here examine their in vivo anti-inflammatory activities. MGDG, DGDG and SQDG inhibit croton-oil-induced ear oedema in the mouse in a dose-dependent manner. Inhibition by MGDG is greater than that of the reference drug, betamethasone 17,21-dipropionate, and is largely abrogated following acyl group saturation. SQDG is the least potent of these glycoglycerolipids, and shows an early transient effect. In the in vivo carrageenan-induced paw oedema model in the mouse, the inhibitory effects are again dose dependent, with an enhanced efficacy of MGDG over DGDG, SQDG and the reference drug, indomethacin. These compounds are all less toxic than indomethacin. The selective and enhanced inhibitory effects of MGDG over DGDG indicate the mechanisms behind these in vivo anti-inflammatory actions.


Prognostic relevance of LGALS3BP in human colorectal carcinoma.

  • Enza Piccolo‎ et al.
  • Journal of translational medicine‎
  • 2015‎

A previous report has shown that LGALS3BP (also known as 90K or Mac-2 BP) has antitumor activity in colorectal cancer (CRC) via suppression of Wnt signalling with a novel mechanism of ISGylation-dependent ubiquitination of β-catenin. The role of LGALS3BP in CRC prognosis was investigated.


Neoadjuvant Immune-Checkpoint Blockade in Triple-Negative Breast Cancer: Current Evidence and Literature-Based Meta-Analysis of Randomized Trials.

  • Daniele Marinelli‎ et al.
  • Cancers‎
  • 2020‎

Chemotherapy based on the sequential use of anthracyclines and taxanes has long represented the most efficacious approach in the management of early-stage, triple-negative breast cancer, whose aggressive behavior is widely renowned. This standard chemotherapy backbone was subsequently enriched by the use of carboplatin, based on its association with increased pathologic complete response and efficacy in the metastatic setting. Following the results from the IMpassion130 trial, the recent approval of the immunotherapic agent atezolizumab in combination with chemotherapy as first-line treatment for programmed-death ligand 1-positive, unresectable locally advanced, or metastatic triple-negative breast cancer increasingly fueled the flourishing of trials of immune-checkpoint inhibitors in the early setting. In this work, we review the most recent inherent literature in light of key methodological issues and provide a quantitative summary of the results from phase II-III randomized trials of immunotherapic agents combined with chemotherapy in the setting of interest. Hints regarding future directions are also discussed.


Palliative radiotherapy in advanced cancer patients treated with immune-checkpoint inhibitors: The PRACTICE study.

  • Melissa Bersanelli‎ et al.
  • Biomedical reports‎
  • 2020‎

In the present study, the influence of purely palliative radiotherapy (pRT) on the outcomes of patients with advanced cancer undergoing immune checkpoint blockade was evaluated. Patients were stratified into three groups: Patients who had received pRT within 6 months prior to the initiation of immunotherapy (previous pRT); patients who received pRT during immunotherapy (concurrent pRT); and patients who did not receive RT prior to or during immunotherapy (no RT group), and these groups were compared. The median overall survival (mOS), median progression free survival (mPFS) and median time-to-treatment failure (mTTF) for the previous pRT group were significantly shorter compared with the no RT group (mOS, 3.6 vs. 12.1 months, respectively, P=0.0095; mPFS 1.8 vs. 5.4 months, respectively, P=0.0016; mTTF 1.8 vs. 5.7 months, respectively, P=0.0035). The concurrent pRT group had a longer mTTF compared with the previous pRT group and similar outcomes to the no RT group. In the previous pRT group, 26.9% of the patients experienced immune-related adverse events compared with 40.1% of patients in the no RT group. Despite the use of pRT during immunotherapy being considered safe, the results of the present study suggest that pRT has a negative effect on immune balance.


Flow Cytometry Detection of Anthracycline-Treated Breast Cancer Cells: An Optimized Protocol.

  • Giulia Catitti‎ et al.
  • Current issues in molecular biology‎
  • 2022‎

The use of anthracycline derivatives was approved for the treatment of a broad spectrum of human tumors (i.e., breast cancer). The need to test these drugs on cancer models has pushed the basic research to apply many types of in vitro assays, and, among them, the study of anthracycline-induced apoptosis was mainly based on the application of flow cytometry protocols. However, the chemical structure of anthracycline derivatives gives them a strong autofluorescence effect that must be considered when flow cytometry is used. Unfortunately, the guidelines on the analysis of anthracycline effects through flow cytometry are lacking. Therefore, in this study, we optimized the flow cytometry detection of doxorubicin and epirubicin-treated breast cancer cells. Their autofluorescence was assessed both by using conventional and imaging flow cytometry; we found that all the channels excited by the 488 nm laser were affected. Anthracycline-induced apoptosis was then measured via flow cytometry using the optimized setting. Consequently, we established a set of recommendations that enable the development of optimized flow cytometry settings when the in vitro assays of anthracycline effects are analyzed, with the final aim to reveal a new perspective on the use of those in vitro tests for the further implementation of precision medicine strategies in cancer.


The Benzimidazole-Based Anthelmintic Parbendazole: A Repurposed Drug Candidate That Synergizes with Gemcitabine in Pancreatic Cancer.

  • Rosalba Florio‎ et al.
  • Cancers‎
  • 2019‎

Pancreatic cancer (PC) is one of the most lethal, chemoresistant malignancies and it is of paramount importance to find more effective therapeutic agents. Repurposing of non-anticancer drugs may expand the repertoire of effective molecules. Studies on repurposing of benzimidazole-based anthelmintics in PC and on their interaction with agents approved for PC therapy are lacking. We analyzed the effects of four Food and Drug Administration (FDA)-approved benzimidazoles on AsPC-1 and Capan-2 pancreatic cancer cell line viability. Notably, parbendazole was the most potent benzimidazole affecting PC cell viability, with half maximal inhibitory concentration (IC50) values in the nanomolar range. The drug markedly inhibited proliferation, clonogenicity and migration of PC cell lines through mechanisms involving alteration of microtubule organization and formation of irregular mitotic spindles. Moreover, parbendazole interfered with cell cycle progression promoting G2/M arrest, followed by the emergence of enlarged, polyploid cells. These abnormalities, suggesting a mitotic catastrophe, culminated in PC cell apoptosis, are also associated with DNA damage in PC cell lines. Remarkably, combinations of parbendazole with gemcitabine, a drug employed as first-line treatment in PC, synergistically decreased PC cell viability. In conclusion, this is the first study providing evidence that parbendazole as a single agent, or in combination with gemcitabine, is a repurposing candidate in the currently dismal PC therapy.


Weighing the role of skeletal muscle mass and muscle density in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: a multicenter real-life study.

  • Alessio Cortellini‎ et al.
  • Scientific reports‎
  • 2020‎

Sarcopenia represents one of the hallmarks of all chronic diseases, including cancer, and was already investigated as a prognostic marker in the pre-immunotherapy era. Sarcopenia can be evaluated using cross-sectional image analysis of CT-scans, at the level of the third lumbar vertebra (L3), to estimate the skeletal muscle index (SMI), a surrogate of skeletal muscle mass, and to evaluate the skeletal muscle density (SMD). We performed a retrospective analysis of consecutive advanced cancer patient treated with PD-1/PD-L1 checkpoint inhibitors. Baseline SMI and SMD were evaluated and optimal cut-offs for survival, according to sex and BMI (+/-25) were computed. The evaluated clinical outcomes were: objective response rate (ORR), immune-related adverse events (irAEs), progression free survival (PFS) and overall survival (OS). From April 2015 to April 2019, 100 consecutive advanced cancer patients were evaluated. 50 (50%) patients had a baseline low SMI, while 51 (51%) had a baseline low SMD according to the established cut offs. We found a significant association between SMI and ECOG-PS (p = 0.0324), while no correlations were found regarding SMD and baseline clinical factors. The median follow-up was 20.3 months. Patients with low SMI had a significantly shorter PFS (HR = 1.66 [95% CI: 1.05-2.61]; p = 0.0291) at univariate analysis, but not at the multivariate analysis. They also had a significantly shorter OS (HR = 2.19 [95% CI: 1.31-3.64]; p = 0.0026). The multivariate analysis confirmed baseline SMI as an independent predictor for OS (HR = 2.19 [1.31-3.67]; p = 0.0027). We did not find significant relationships between baseline SMD and clinical outcomes, nor between ORR, irAEs and baseline SMI (data not shown). Low SMI is associated with shortened survival in advanced cancer patients treated with PD1/PDL1 checkpoint inhibitors. However, the lack of an association between SMI and clinical response suggests that sarcopenia may be generally prognostic in this setting rather than specifically predictive of response to immunotherapy.


The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium.

  • Chloé Maurizy‎ et al.
  • Nature communications‎
  • 2021‎

The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.


3D-Informed Targeting of the Trop-2 Signal-Activation Site Drives Selective Cancer Vulnerability.

  • Emanuela Guerra‎ et al.
  • Molecular cancer therapeutics‎
  • 2023‎

Next-generation Trop-2-targeted therapy against advanced cancers is hampered by expression of Trop-2 in normal tissues. We discovered that Trop-2 undergoes proteolytic activation by ADAM10 in cancer cells, leading to the exposure of a previously inaccessible protein groove flanked by two N-glycosylation sites. We designed a recognition strategy for this region, to drive selective cancer vulnerability in patients. Most undiscriminating anti-Trop-2 mAbs recognize a single immunodominant epitope. Hence, we removed it by deletion mutagenesis. Cancer-specific, glycosylation-prone mAbs were selected by ELISA, bio-layer interferometry, flow cytometry, confocal microscopy for differential binding to cleaved/activated, wild-type and glycosylation site-mutagenized Trop-2. The resulting 2G10 mAb family binds Trop-2-expressing cancer cells, but not Trop-2 on normal cells. We humanized 2G10 by state-of-the-art complementarity determining region grafting/re-modeling, yielding Hu2G10. This antibody binds cancer-specific, cleaved/activated Trop-2 with Kd < 10-12 mol/L, and uncleaved/wtTrop-2 in normal cells with Kd 3.16×10-8 mol/L, thus promising an unprecedented therapeutic index in patients. In vivo, Hu2G10 ablates growth of Trop-2-expressing breast, colon, prostate cancers, but shows no evidence of systemic toxicity, paving the way for a paradigm shift in Trop-2-targeted therapy.


Vitamin D3 improves the effects of low dose Der p 2 allergoid treatment in Der p 2 sensitized BALB/c mice.

  • Claudia Petrarca‎ et al.
  • Clinical and molecular allergy : CMA‎
  • 2016‎

Airborne allergens can induce an immunological chronic disease characterized by airway hyper responsiveness and inflammation, mediated by exaggerated Th2 immune response. Allergen-specific immunotherapy (AIT) is effective for treating this condition because it is able to modify its natural course by opposing the underlying pathogenic mechanisms and determining immune suppression, immune deviation and tolerance. The rational for the present study was to investigate the possibility of improving allergoid-based IT in terms of efficacy and safety. Recently, 1α,25-dihydroxyvitamin D3 (VD3), the active metabolite of vitamin D3, was described to be a potent inducer of T regulatory cells and to be a good adjuvant in AIT settings.


Effect of Gender on the Outcome of Patients Receiving Immune Checkpoint Inhibitors for Advanced Cancer: A Systematic Review and Meta-Analysis of Phase III Randomized Clinical Trials.

  • Antonino Grassadonia‎ et al.
  • Journal of clinical medicine‎
  • 2018‎

Evidence has recently emerged on the influence of gender on the immune system. In this systematic review and meta-analysis of phase III randomized clinical trials (RCTs), we explored the impact of gender on survival in patients with advanced cancer treated with immune checkpoint inhibitors (ICIs). We performed a comprehensive search of the literature updated to April 2018, including the Cochrane Central Register of Controlled Trials, PubMed, and EMBASE. We extracted data on study characteristics and risk of bias in duplicate. Of 423 unique citations, 21 RCTs were included, inherently to 12,635 patients. Both males and females showed reduced risk of death associated with ICIs use (HR 0.73, p < 0.001 and HR 0.77, p < 0.001, respectively). Subgroup analyses by specific ICI showed similar OS in both genders for anti-PD-1/PDL-1. Anti-CTLA-4 use was associated with longer OS in men only (HR 0.77, p < 0.012), with the exception of melanoma (in women, HR 0.80, p = 0.006). PFS was longer in men than in women (HR 0.67, p < 0.001 and HR 0.77, p = 0.100, respectively). Conclusively, ICIs use was associated with more favorable outcomes in men, particularly for anti-CTLA-4 agents. In melanoma, not gender-related factors may influence the anti-tumor immune response evoked by ICIs.


A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable.

  • Alessio Cortellini‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2019‎

Recent evidence suggested a potential correlation between overweight and the efficacy of immune checkpoint inhibitors (ICIs) in cancer patients.


Predictive value of skeletal muscle mass for immunotherapy with nivolumab in non-small cell lung cancer patients: A "hypothesis-generator" preliminary report.

  • Alessio Cortellini‎ et al.
  • Thoracic cancer‎
  • 2019‎

Sarcopenia represents one of the hallmarks of all chronic disease, including non-small cell lung cancer (NSCLC). A computed tomography scan is an easy modality to estimate the skeletal muscle mass through cross-sectional image analysis at the level of the third lumbar vertebra (L3). Baseline skeletal muscle mass (SMM) was evaluated using gender-specific cutoffs for skeletal muscle index in NSCLC patients administered immunotherapy with nivolumab to evaluate its possible correlations with clinical outcomes. From April 2015 to August 2018, 23 stage IV NSCLC patients were eligible for image analysis. Nine patients (39.1%) had low SMM. Among patients with baseline low and non-low SMM, median progression free survival was 3.1 and 3.8 months, respectively (P = 0.0560), while median overall survival was 4.1 and 13 months, respectively (P = 0.2866). This hypothesis-generating preliminary report offers the opportunity to speculate about the negative influence of sarcopenia on immune response. In our opinion, nutritional status could affect the clinical outcomes of immunotherapy, even if we cannot make definitive conclusions here. Further studies on the topic are required.


Targeting Vesicular LGALS3BP by an Antibody-Drug Conjugate as Novel Therapeutic Strategy for Neuroblastoma.

  • Emily Capone‎ et al.
  • Cancers‎
  • 2020‎

Neuroblastoma is the most common extra-cranial solid tumor in infants and children, which accounts for approximately 15% of all cancer-related deaths in the pediatric population. New therapeutic modalities are urgently needed. Antibody-Drug Conjugates (ADC)s-based therapy has been proposed as potential strategy to treat this pediatric malignancy. LGALS3BP is a highly glycosylated protein involved in tumor growth and progression. Studies have shown that LGALS3BP is enriched in extracellular vesicles (EV)s derived by most neuroblastoma cells, where it plays a critical role in preparing a favorable tumor microenvironment (TME) through direct cross talk between cancer and stroma cells. Here, we describe the development of a non-internalizing LGALS3BP ADC, named 1959-sss/DM3, which selectively targets LGALS3BP expressing neuroblastoma. 1959-sss/DM3 mediated potent therapeutic activity in different types of neuroblastoma models. Notably, we found that treatments were well tolerated at efficacious doses that were fully curative. These results offer preclinical proof-of-concept for an ADC targeting exosomal LGALS3BP approach for neuroblastomas.


Paragangliomas arise through an autonomous vasculo-angio-neurogenic program inhibited by imatinib.

  • Fabio Verginelli‎ et al.
  • Acta neuropathologica‎
  • 2018‎

Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protein expression levels. Both tumour tissue- and cell culture-derived xenografts recapitulated the vasculoneural paraganglioma structure and arose from mesenchymal-like cells through a fixed developmental sequence. First, vasculoangiogenesis organized the microenvironment, building a perivascular niche which in turn supported neurogenesis. Neuroepithelial differentiation was associated with severe mitochondrial dysfunction, not present in cultured paraganglioma cells, but acquired in vivo during xenograft formation. Vasculogenesis was the Achilles' heel of xenograft development. In fact, imatinib, that targets endothelial-mural signalling, blocked paraganglioma xenograft formation (11 xenografts from 12 cell transplants in the control group versus 2 out of 10 in the treated group, P = 0.0015). Overall our key results were unaffected by the SDHx gene carrier status of the patient, characterized for 70 out of 77 cases. In conclusion, we explain the biphasic vasculoneural structure of paragangliomas and identify an early and pharmacologically actionable phase of paraganglioma organization.


Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates.

  • Laura De Lellis‎ et al.
  • Cancers‎
  • 2021‎

Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.


Tgf-β1 transcriptionally promotes 90K expression: possible implications for cancer progression.

  • Antonino Grassadonia‎ et al.
  • Cell death discovery‎
  • 2021‎

The 90K protein, also known as Mac-2 BP or LGALS3BP, can activate the immune response in part by increasing major histocompatibility (MHC) class I levels. In studies on a non-immune cell model, the rat FRTL-5 cell line, we observed that transforming growth factor (TGF)-β1, like γ-interferon (IFN), increased 90K levels, despite its immunosuppressive functions and the ability to decrease MHC class I. To explain this paradoxical result, we investigated the mechanisms involved in the TGF-β1 regulation of 90K expression with the aim to demonstrate that TGF-β1 utilizes different molecular pathways to regulate the two genes. We found that TGF-β1 was able to increase the binding of Upstream Stimulatory Factors, USF1 and USF2, to an E-box element, CANNTG, at -1926 to -1921 bp, upstream of the interferon response element (IRE) in the 90K promoter. Thyrotropin (TSH) suppressed constitutive and γ-IFN-induced 90K expression by decreasing USF binding to the E-box. TGF-β1 was able to overcome TSH suppression at the transcriptional level by increasing USF binding to the E-box. We suggest that the ability of TGF-β1 to increase 90K did not result in an increase in MHC class I because of a separate suppressive action of TGF-β1 directly on the MHC class I gene. We propose that the increased levels of 90K may play a role, rather than in immune response, in the context of the TGF-β1-induced changing of the cellular microenvironment that predisposes to cell motility and cancer progression. Consistently, analyzing the publicly available cancer patient data sets cBioPortal, we found that 90K expression directly correlated with TGF-β1 and USFs and that high levels of 90K were significantly associated with increased mortality in patients affected by different types of cancer.


MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells.

  • Antonella De Cola‎ et al.
  • Cell death & disease‎
  • 2018‎

Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: