Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Liposomal doxorubicin for active targeting: surface modification of the nanocarrier evaluated in vitro and in vivo: challenges and prospects.

  • Judith Jakoby‎ et al.
  • Oncotarget‎
  • 2015‎

Due to the inability of classical chemotherapeutic agents to exclusively target tumor cells, these treatments are associated with severe toxicity profiles. Thus, long-circulating liposomes have been developed in the past to enhance accumulation in tumor tissue by passive targeting. Accordingly, commercially available liposomal formulations of sterically stabilized liposomal doxorubicin (Caelyx, Doxil, Lipodox) are associated with improved off-target profiles. However, these preparations are still not capable to selectively bind to target cells. Thus, in an attempt to further optimize existing treatment schemes immunoliposomes have been established to enable active targeting of tumor tissues. Recently, we have provided evidence for therapeutic efficacy of anti-IGF1R-targeted, surface modified doxorubicin loaded liposomes. Our approach involved a technique, which allows specific post-modifications of the liposomal surface by primed antibody-anchor conjugates thereby facilitating personalized approaches of commercially available liposomal drugs. In the current study, post-modification of sterically stabilized liposomal Dox was thoroughly investigated including the influence of different modification techniques (PIT, SPIT, SPIT60), lipid composition (SPC/Chol, HSPC/Chol), and buffers (HBS, SH). As earlier in vivo experiments did not take into account the presence of non-integrated ab-anchor conjugates this was included in the present study. Our experiments provide evidence that post-modification of commercially available liposomal preparations for active targeting is possible. Moreover, lyophilisation represents an applicable method to obtain a storable precursor of surface modifying antibody-anchor conjugates. Thus, these findings open up new approaches in patient individualized targeting of chemotherapeutic therapies.


Elucidating the Role of the Maternal Embryonic Leucine Zipper Kinase in Adrenocortical Carcinoma.

  • Katja Kiseljak-Vassiliades‎ et al.
  • Endocrinology‎
  • 2018‎

Adrenocortical carcinoma (ACC) is an aggressive cancer with a 5-year survival rate <35%. Mortality remains high due to lack of targeted therapies. Using bioinformatic analyses, we identified maternal embryonic leucine zipper kinase (MELK) as 4.1-fold overexpressed in ACC compared with normal adrenal samples. High MELK expression in human tumors correlated with shorter survival and with increased expression of genes involved in cell division and growth. We investigated the functional effects of MELK inhibition using newly developed ACC cell lines with variable MELK expression, CU-ACC1 and CU-ACC2, compared with H295R cells. In vitro treatment with the MELK inhibitor, OTSSP167, resulted in a dose-dependent decrease in rates of cell proliferation, colony formation, and cell survival, with relative sensitivity of each ACC cell line based upon the level of MELK overexpression. To confirm a MELK-specific antitumorigenic effect, MELK was inhibited in H295R cells via multiple short hairpin RNAs. MELK silencing resulted in 1.9-fold decrease in proliferation, and 3- to 10-fold decrease in colony formation in soft agar and clonogenicity assays, respectively. In addition, although MELK silencing had no effect on survival in normoxia, exposure to a hypoxia resulted in a sixfold and eightfold increase in apoptosis as assessed by caspase-3 activation and TUNEL, respectively. Together these data suggest that MELK is a modulator of tumor cell growth and survival in a hypoxic microenvironment in adrenal cancer cells and support future investigation of its role as a therapeutic kinase target in patients with ACC.


Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation.

  • Constanze Hantel‎ et al.
  • Oncotarget‎
  • 2016‎

In recent years it has been recognized that clinical translation of novel therapeutic strategies for patients with adrenocortical carcinoma (ACC) often fails. These disappointing results indicate that the currently utilized tumor models only poorly reflect relevant pathophysiology and, thereby, do not predict clinical applicability of novel pharmacological approaches. However, also the development of new preclinical ACC models has remained a challenge with only one human cell line (NCI-H295R) and one recently established human pediatric xenograft model (SJ-ACC3) being available for this highly heterogeneous malignancy. Our current study furthermore reveals a poor reproducibility of therapeutic action between different clones of the most commonly used tumor model NCI-H295R. In an attempt to broaden the current preclinical armamentarium, we aimed at the development of patient-individual tumor models. During these studies, one xenograft (MUC-1) displayed marked engraftment and sustained tumor growth. MUC-1 tumor analysis revealed highly vascularized, proliferating and SF-1 positive xenografts. In a next step, we characterized all currently available human tumor models for ACC for Ki67, SF-1 and EGF-receptor status in comparison with MUC-1-xenografts. In addition, we established a primary culture, which is now viable over 31 passages with sustained nuclear SF-1 and cytoplasmic 3βHSD immuno-positivity. Subsequent investigation of therapeutic responsiveness upon treatment with the current systemic gold standard EDP-M (etoposide, doxorubicin, cisplatin and mitotane) demonstrated maintenance of the clinically observed drug resistance for MUC-1 exclusively. In summary, we provide evidence for a novel patient-derived tumor model with the potential to improve clinical prediction of novel therapeutic strategies for patients with ACC.


Deoxyguanosine kinase mutation F180S is associated with a lean phenotype in mice.

  • Cédric Francis Borreguero‎ et al.
  • International journal of obesity (2005)‎
  • 2023‎

Deoxyguanosine kinase (DGUOK) deficiency is one of the genetic causes of mitochondrial DNA depletion syndrome (MDDS) in humans, leading to the hepatocerebral or the isolated hepatic form of MDDS. Mouse models are helpful tools for the improvement of understanding of the pathophysiology of diseases and offer the opportunity to examine new therapeutic options.


In vitro cytotoxicity of cabazitaxel in adrenocortical carcinoma cell lines and human adrenocortical carcinoma primary cell cultures☆.

  • Martina Fragni‎ et al.
  • Molecular and cellular endocrinology‎
  • 2019‎

Adrenocortical cancer (ACC) is a rare and aggressive malignancy with a poor prognosis. The overall 5-year survival rate of patients with ENS@T stage IV ACC is less than 15%. Systemic antineoplastic therapies have a limited efficacy and new drugs are urgently needed. Human ACC primary cultures and cell lines were used to assess the cytotoxic effect of cabazitaxel, and the role of P-glycoprotein in mediating this effect. Cabazitaxel reduced ACC cell viability, both in ACC cell lines and in ACC primary cell cultures. Molecular and pharmacological targeting of ABCB1/P-gp did not modify its cytotoxic effect in NCI-H295R cells, while it increased the paclitaxel-induced toxicity. Cabazitaxel modified the expression of proteins involved in cellular physiology, such as apoptosis and cell cycle regulation. The drug combination cabazitaxel/mitotane exerted an additive/moderate synergism in different ACC cell experimental models. These results provide a rationale for testing cabazitaxel in a clinical study.


Testing Cancer Immunotherapy in a Human Immune System Mouse Model: Correlating Treatment Responses to Human Chimerism, Therapeutic Variables and Immune Cell Phenotypes.

  • Juan A Marín-Jiménez‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Over the past decade, immunotherapies have revolutionized the treatment of cancer. Although the success of immunotherapy is remarkable, it is still limited to a subset of patients. More than 1500 clinical trials are currently ongoing with a goal of improving the efficacy of immunotherapy through co-administration of other agents. Preclinical, small-animal models are strongly desired to increase the pace of scientific discovery, while reducing the cost of combination drug testing in humans. Human immune system (HIS) mice are highly immune-deficient mouse recipients rtpeconstituted with human hematopoietic stem cells. These HIS-mice are capable of growing human tumor cell lines and patient-derived tumor xenografts. This model allows rapid testing of multiple, immune-related therapeutics for tumors originating from unique clinical samples. Using a cord blood-derived HIS-BALB/c-Rag2nullIl2rγnullSIRPαNOD (BRGS) mouse model, we summarize our experiments testing immune checkpoint blockade combinations in these mice bearing a variety of human tumors, including breast, colorectal, pancreatic, lung, adrenocortical, melanoma and hematological malignancies. We present in-depth characterization of the kinetics and subsets of the HIS in lymph and non-lymph organs and relate these to protocol development and immune-related treatment responses. Furthermore, we compare the phenotype of the HIS in lymph tissues and tumors. We show that the immunotype and amount of tumor infiltrating leukocytes are widely-variable and that this phenotype is tumor-dependent in the HIS-BRGS model. We further present flow cytometric analyses of immune cell subsets, activation state, cytokine production and inhibitory receptor expression in peripheral lymph organs and tumors. We show that responding tumors bear human infiltrating T cells with a more inflammatory signature compared to non-responding tumors, similar to reports of "responding" patients in human immunotherapy clinical trials. Collectively these data support the use of HIS mice as a preclinical model to test combination immunotherapies for human cancers, if careful attention is taken to both protocol details and data analysis.


Metastatic pheochromocytoma and paraganglioma: Somatostatin receptor 2 expression, genetics and therapeutic responses.

  • Alessa Fischer‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2023‎

Pheochromocytomas/paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors.


DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma.

  • Gwenneg Kerdivel‎ et al.
  • Clinical epigenetics‎
  • 2023‎

Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays elusive.


Heat Shock Protein 90 as a Prognostic Marker and Therapeutic Target for Adrenocortical Carcinoma.

  • Claudia Siebert‎ et al.
  • Frontiers in endocrinology‎
  • 2019‎

Background: Adrenocortical carcinoma (ACC) is a rare tumor entity with restricted therapeutic opportunities. HSP90 (Heat Shock Protein 90) chaperone activity is fundamental for cell survival and contributes to different oncogenic signaling pathways. Indeed, agents targeting HSP90 function have shown therapeutic efficacy in several cancer types. We have examined the expression of HSP90 in different adrenal tumors and evaluated the use of HSP90 inhibitors in vitro as possible therapy for ACC. Methods: Immunohistochemical expression of HSP90 isoforms was investigated in different adrenocortical tumors and associated with clinical features. Additionally, a panel of N-terminal (17-allylamino-17-demethoxygeldanamycin (17-AAG), luminespib, and ganetespib) and C-terminal (novobiocin and silibinin) HSP90 inhibitors were tested on various ACC cell lines. Results: Within adrenocortical tumors, ACC samples exhibited the highest expression of HSP90β. Within a cohort of ACC patients, HSP90β expression levels were inversely correlated with recurrence-free and overall survival. In functional assays, among five different compounds tested luminespib and ganetespib induced a significant decrease in cell viability in single as well as in combined treatments with compounds of the clinically used EDP-M scheme (etoposide, doxorubicin, cisplatin, mitotane). Inhibition of cell viability correlated furthermore with a decrease in proliferation, in cell migration and an increase in apoptosis. Moreover, analysis of cancer pathways indicated a modulation of the ERK1/2-and AKT-pathways by luminespib and ganetespib treatment. Conclusions: Our findings emphasize HSP90 as a marker with prognostic impact and promising target with N-terminal HSP90 inhibitors as drugs with potential therapeutic efficacy toward ACC.


Stimulated Expression of CXCL12 in Adrenocortical Carcinoma by the PPARgamma Ligand Rosiglitazone Impairs Cancer Progression.

  • Giulia Cantini‎ et al.
  • Journal of personalized medicine‎
  • 2021‎

Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis when metastatic and scarce treatment options in the advanced stages. In solid tumors, the chemokine CXCL12/CXCR4 axis is involved in the metastatic process. We demonstrated that the human adrenocortex expressed CXCL12 and its cognate receptors CXCR4 and CXCR7, not only in physiological conditions, but also in ACC, where the receptors' expression was higher and the CXCL12 expression was lower than in the physiological conditions. In a small pilot cohort of 22 ACC patients, CXCL12 negatively correlated with tumor size, stage, Weiss score, necrosis, and mitotic activity. In a Kaplan-Meier analysis, the CXCL12 tumor expression significantly predicted disease-free, progression-free, and overall survival. In vitro treatment of the primary ACC H295R and of the metastatic MUC-1 cell line with the PPARγ-ligand rosiglitazone (RGZ) dose-dependently reduced proliferation, resulting in a significant increase in CXCL12 and a decrease in its receptors in the H295R cells only, with no effect on the MUC-1 levels. In ACC mouse xenografts, tumor growth was inhibited by the RGZ treatment before tumor development (prevention-setting) and once the tumor had grown (therapeutic-setting), similarly to mitotane (MTT). This inhibition was associated with a significant suppression of the tumor CXCR4/CXCR7 and the stimulation of human CXCL12 expression. Tumor growth correlated inversely with CXCL12 and positively with CXCR4 expression, suggesting that local CXCL12 may impair the primary tumor cell response to the ligand gradient that may contribute to driving the tumor progression. These findings indicate that CXCL12/CXCR4 may constitute a potential target for anti-cancer agents such as rosiglitazone in the treatment of ACC.


Adrenocortical Carcinoma (ACC) Cells Rewire Their Metabolism to Overcome Curcumin Antitumoral Effects Opening a Window of Opportunity to Improve Treatment.

  • Marta Claudia Nocito‎ et al.
  • Cancers‎
  • 2023‎

Extensive research suggests that curcumin interferes with multiple cell signaling pathways involved in cancer development and progression. This study aimed to evaluate curcumin effects on adrenocortical carcinoma (ACC), a rare but very aggressive tumor. Curcumin reduced growth, migration and activated apoptosis in three different ACC cell lines, H295R, SW13, MUC-1. This event was related to a decrease in estrogen-related receptor-α (ERRα) expression and cholesterol synthesis. More importantly, curcumin changed ACC cell metabolism, increasing glycolytic gene expression. However, pyruvate from glycolysis was only minimally used for lactate production and the Krebs cycle (TCA). In fact, lactate dehydrogenase, extracellular acidification rate (ECAR), TCA genes and oxygen consumption rate (OCR) were reduced. We instead found an increase in Glutamic-Pyruvic Transaminase (GPT), glutamine antiport transporter SLC1A5 and glutaminase (GLS1), supporting a metabolic rewiring toward glutamine metabolism. Targeting this mechanism, curcumin effects were improved. In fact, in a low glutamine-containing medium, the growth inhibitory effects elicited by curcumin were observed at a concentration ineffective in default growth medium. Data from this study prove the efficacy of curcumin against ACC growth and progression and point to the concomitant use of inhibitors for glutamine metabolism to improve its effects.


The crosstalk between FGF21 and GH leads to weakened GH receptor signaling and IGF1 expression and is associated with growth failure in very preterm infants.

  • Jayna N Mistry‎ et al.
  • Frontiers in endocrinology‎
  • 2023‎

Fibroblast growth factor 21 (FGF21) is an essential metabolic regulator that adapts to changes in nutritional status. Severe childhood undernutrition induces elevated FGF21 levels, contributing to growth hormone (GH) resistance and subsequent linear growth attenuation potentially through a direct action on chondrocytes.


PD-L1 and HIF-2α Upregulation in Head and Neck Paragangliomas after Embolization.

  • Alessa Fischer‎ et al.
  • Cancers‎
  • 2023‎

Hypoxia activates pathways associated with tumor progression, metastatic spread, and alterations in the immune microenvironment leading to an immunosuppressive phenotype. In particular, the upregulation of PD-L1, a target for therapy with checkpoint inhibitors, is well-studied in several tumors. However, the relationship between hypoxia and PD-L1 regulation in pheochromocytomas and paragangliomas (PPGL), and especially in paragangliomas treated with embolization, is still largely unexplored. We investigated the expression of the hypoxia-marker HIF-2α and of PD-L1 in a PPGL-cohort with and without embolization as potential biomarkers that may predict the response to treatment with HIF-2α and checkpoint inhibitors. A total of 29 tumor samples from 25 patients who were operated at a single center were included and analyzed utilizing immunohistochemistry (IHC) for PD-L1 and HIF-2α. Embolization prior to surgery was performed in seven (24%) tumors. PD-L1 expression in tumor cells of head and neck paragangliomas (HNPGLs) receiving prior embolization (median PD-L1 positivity: 15%) was significantly higher as compared to PD-L1 expression in HNPGLs without prior embolization (median PD-L1 positivity: 0%) (p = 0.008). Consistently, significantly more HNPGLs with prior embolization were positive for HIF-2α (median nuclear HIF-2α positivity: 40%) as compared to HNPGLs without prior embolization (median nuclear HIF-2α positivity: 0%) (p = 0.016). Our results support the hypothesis that embolization with subsequent hypoxia leads to the upregulation of both PD-L1 and HIF-2α in HNPGLs, and could thus facilitate targeted treatment with HIF-2α and checkpoint inhibitors in the case of inoperable, locally advanced, or metastatic disease.


Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction.

  • Isabel Weigand‎ et al.
  • Cell death & disease‎
  • 2020‎

Conditions of impaired adrenal function and tissue destruction, such as in Addison's disease, and treatment resistance of adrenocortical carcinoma (ACC) necessitate improved understanding of the pathophysiology of adrenal cell death. Due to relevant oxidative processes in the adrenal cortex, our study investigated the role of ferroptosis, an iron-dependent cell death mechanism and found high adrenocortical expression of glutathione peroxidase 4 (GPX4) and long-chain-fatty-acid CoA ligase 4 (ACSL4) genes, key factors in the initiation of ferroptosis. By applying MALDI mass spectrometry imaging to normal and neoplastic adrenocortical tissue, we detected high abundance of arachidonic and adrenic acid, two long chain polyunsaturated fatty acids which undergo peroxidation during ferroptosis. In three available adrenal cortex cell models (H295R, CU-ACC1 and CU-ACC-2) a high susceptibility to GPX4 inhibition with RSL3 was documented with EC50 values of 5.7 × 10-8, 8.1 × 10-7 and 2.1 × 10-8 M, respectively, while all non-steroidogenic cells were significantly less sensitive. Complete block of GPX4 activity by RSL3 led to ferroptosis which was completely reversed in adrenal cortex cells by inhibition of steroidogenesis with ketoconazole but not by blocking the final step of cortisol synthesis with metyrapone. Mitotane, the only approved drug for ACC did not induce ferroptosis, despite strong induction of lipid peroxidation in ACC cells. Together, this report is the first to demonstrate extraordinary sensitivity of adrenal cortex cells to ferroptosis dependent on their active steroid synthetic pathways. Mitotane does not induce this form of cell death in ACC cells.


Targeted Gene Expression Profile Reveals CDK4 as Therapeutic Target for Selected Patients With Adrenocortical Carcinoma.

  • Raimunde Liang‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Adrenocortical carcinomas (ACC) are aggressive tumors with a heterogeneous prognosis and limited therapeutic options for advanced stages. This study aims to identify novel drug targets for a personalized treatment in ACC. RNA was isolated from 40 formalin-fixed paraffin-embedded ACC samples. We evaluated gene expression of 84 known cancer drug targets by reverse transcriptase quantitative real time-PCR and calculated fold change using 5 normal adrenal glands as reference (overexpression by fold change >2.0). The most promising candidate cyclin-dependent kinase 4 (CDK4) was investigated at protein level in 104 ACC samples and tested by in vitro experiments in two ACC cell lines (NCI-H295R and MUC1). The most frequently overexpressed genes were TOP2A (100% of cases, median fold change = 16.5), IGF2 (95%, fold change = 52.9), CDK1 (80%, fold change = 6.7), CDK4 (62%, fold change = 2.6), PLK4 (60%, fold change = 2.8), and PLK1 (52%, fold change = 2.3). CDK4 was chosen for functional validation, as it is actionable by approved CDK4/6-inhibitors (e.g., palbociclib). Nuclear immunostaining of CDK4 significantly correlated with mRNA expression (R = 0.52, P < 0.005). We exposed both NCI-H295R and MUC1 cell lines to palbociclib and found a concentration- and time-dependent reduction of cell viability, which was more pronounced in the NCI-H295R cells in line with higher CDK4 expression. Furthermore, we tested palbociclib in combination with insulin-like growth factor 1/insulin receptor inhibitor linsitinib showing an additive effect. In conclusion, we demonstrate that RNA profiling is useful to discover potential drug targets and that CDK4/6 inhibitors are promising candidates for treatment of selected patients with ACC.


Mitotane Targets Lipid Droplets to Induce Lipolysis in Adrenocortical Carcinoma.

  • Kate M Warde‎ et al.
  • Endocrinology‎
  • 2022‎

Adrenocortical carcinoma (ACC) is a rare aggressive cancer with low overall survival. Adjuvant mitotane improves survival but is limited by poor response rates and resistance. Mitotane's efficacy is attributed to the accumulation of toxic free cholesterol, predominantly through cholesterol storage inhibition. However, targeting this pathway has proven unsuccessful. We hypothesize that mitotane-induced free-cholesterol accumulation is also mediated through enhanced breakdown of lipid droplets.


Leptomeningeal Metastasis from Adrenocortical Carcinoma: A Case Report.

  • Anna R Schreiber‎ et al.
  • Journal of the Endocrine Society‎
  • 2020‎

Adrenocortical carcinoma (ACC) is an uncommon endocrine malignancy with limited treatment options. While the overall 5-year survival rate in patients with ACC is 35%, the disease is often rapidly progressive with long-term survival in only 5% of patients. Although tumor stage, grade, and excess hormonal activity predict unfavorable prognosis, additional biomarkers are needed to identify patients with aggressive disease. A 23-year-old woman presented with rapidly progressing signs and symptoms of Cushing's syndrome, with associated abdominal pain and fullness. Evaluation revealed a large left adrenal mass which had developed over 8 months. En bloc surgical resection was performed by an endocrine surgeon, and pathology revealed adrenocortical carcinoma with Ki67 of 60%. Despite adjuvant treatment with mitotane and etoposide-doxorubicin-carboplatin chemotherapy, the patient had rapid disease progression with metastatic spread to liver, lung, bone, brain, and leptomeningies, and she died 11 months after the initial diagnosis. Subsequent analysis of the patient's tumor revealed mutations in TP53 and MEN1. RNA sequencing was compared against the the Cancer Genome Atlas data set and clustered with the high steroid, proliferative subtype, associated with the worst prognosis. The tumor also demonstrated a low BUB1B/PINK1 ratio and G0S2 hypermethylation, both predictive of very aggressive ACC. This case represents a subset of ACC characterized by rapid and fatal progression. Clinically available predictors as well as recently reported molecular signatures and biomarkers correlated with this tumor's aggressiveness, suggesting that development and validation of combinations of biomarkers may be useful in guiding personalized approaches to patients with ACC.


Inhibition of Aurora kinase A activity enhances the antitumor response of beta-catenin blockade in human adrenocortical cancer cells.

  • Andrea Gutierrez Maria‎ et al.
  • Molecular and cellular endocrinology‎
  • 2021‎

Adrenocortical cancer (ACC) is a rare and aggressive type of endocrine tumor with high risk of recurrence and metastasis. The overall survival of patients diagnosed with ACC is low and treatment for metastatic stages remain limited to mitotane, which has low efficiency in advanced stages of the disease and is associated with high toxicity. Therefore, identification of new biological targets to improve ACC treatment is crucial. Blockade of the Wnt/beta-catenin pathway decreased adrenal steroidogenesis and increased apoptosis of NCI-H295 human ACC cells, in vitro and in a xenograft mouse model. Aurora kinases play important roles in cell division during the G1-M phase and their aberrant expression is correlated with a poor prognosis in different types of tumors. Hence, we hypothesized that inhibition of aurora kinases activity combined with the beta-catenin pathway blockade would improve the impairment of ACC cell growth in vitro. We studied the combinatorial effects of AMG 900, an aurora kinase inhibitor and PNU-74654, a beta-catenin pathway blocker, on proliferation, survival and tumor progression in multiple ACC cell lines: NCI-H295, CU-ACC1 and CU-ACC2. Exposure of ACC cells to the combination of AMG 900 with PNU-74654 decreased cell proliferation and viability compared to either treatment alone. In addition, AMG 900 inhibited cell invasion and clonogenesis compared to PNU-74654, and the combination showed no greater effects. In contrast, PNU-74654 was more effective in decreasing cortisol secretion. These data suggest that inhibition of aurora kinases activity combined with blockade of the beta-catenin pathway may provide a combinatorial approach for targeting ACC tumors.


Cytotoxic Effect of Trabectedin In Human Adrenocortical Carcinoma Cell Lines and Primary Cells.

  • Andrea Abate‎ et al.
  • Cancers‎
  • 2020‎

Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). The regimen to be added to mitotane is a chemotherapy including etoposide, doxorubicin, and cisplatin. This pharmacological approach, however, has a limited efficacy and significant toxicity. Evidence indicates that ACC seems to be sensitive to alkylating agents. Trabectedin is an anti-tumor drug that acts as an alkylating agent with a complex mechanism of action. Here, we investigated whether trabectedin could exert a cytotoxic activity in in vitro cell models of ACC. Cell viability was evaluated by MTT assay on ACC cell lines and primary cell cultures. The gene expression was evaluated by q-RT-PCR, while protein expression and localization were studied by Western blot and immunocytochemistry. Combination experiments were performed to evaluate their interaction on ACC cell line viability. Trabectedin demonstrated high cytotoxicity at sub-nanomolar concentrations in ACC cell lines and patient-derived primary cell cultures. The drug was able to reduce /β catenin nuclear localization, although it is unclear whether this effect is involved in the observed cytotoxicity. Trabectedin/mitotane combination exerted a synergic cytotoxic effect in NCI-H295R cells. Trabectedin has antineoplastic activity in ACC cells. The synergistic cytotoxic activity of trabectedin with mitotane provides the rationale for testing this combination in a clinical study.


Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment.

  • Christina Bothou‎ et al.
  • Cancers‎
  • 2021‎

Current systemic treatment options for patients with adrenocortical carcinomas (ACCs) are far from being satisfactory. DNA damage/repair mechanisms, which involve, e.g., ataxia-telangiectasia-mutated (ATM) and ataxia-telangiectasia/Rad3-related (ATR) protein signaling or ribonucleotide reductase subunits M1/M2 (RRM1/RRM2)-encoded ribonucleotide reductase (RNR) activation, commonly contribute to drug resistance. Moreover, the regulation of RRM2b, the p53-induced alternative to RRM2, is of unclear importance for ACC. Upon extensive drug screening, including a large panel of chemotherapies and molecular targeted inhibitors, we provide strong evidence for the anti-tumoral efficacy of combined gemcitabine (G) and cisplatin (C) treatment against the adrenocortical cell lines NCI-H295R and MUC-1. However, accompanying induction of RRM1, RRM2, and RRM2b expression also indicated developing G resistance, a frequent side effect in clinical patient care. Interestingly, this effect was partially reversed upon addition of C. We confirmed our findings for RRM2 protein, RNR-dependent dATP levels, and modulations of related ATM/ATR signaling. Finally, we screened for complementing inhibitors of the DNA damage/repair system targeting RNR, Wee1, CHK1/2, ATR, and ATM. Notably, the combination of G, C, and the dual RRM1/RRM2 inhibitor COH29 resulted in previously unreached total cell killing. In summary, we provide evidence that RNR-modulating therapies might represent a new therapeutic option for ACC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: