Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Molecular determinants of A2AR-D2R allosterism: role of the intracellular loop 3 of the D2R.

  • Víctor Fernández-Dueñas‎ et al.
  • Journal of neurochemistry‎
  • 2012‎

In the CNS, an antagonistic interaction has been shown between adenosine A(2A) and dopamine D(2) receptors (A(2A)Rs and D(2)Rs) that may be relevant both in normal and pathological conditions (i.e., Parkinson's disease). Thus, the molecular determinants mediating this receptor-receptor interaction have recently been explored, as the fine tuning of this target (namely the A(2A)R/D(2)R oligomer) could possibly improve the treatment of certain CNS diseases. Here, we used a fluorescence resonance energy transfer-based approach to examine the allosteric modulation of the D(2)R within the A(2A)R/D(2)R oligomer and the dependence of this receptor-receptor interaction on two regions rich in positive charges on intracellular loop 3 of the D(2)R. Interestingly, we observed a negative allosteric effect of the D(2)R agonist quinpirole on A(2A)R ligand binding and activation. However, these allosteric effects were abolished upon mutation of specific arginine residues (217-222 and 267-269) on intracellular loop 3 of the D(2)R, thus demonstrating a major role of these positively charged residues in mediating the observed receptor-receptor interaction. Overall, these results provide structural insights to better understand the functioning of the A(2A)R/D(2)R oligomer in living cells.


Chronic adenosine A2A receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37-deficient mice.

  • Xavier Morató‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

Adenosine A2A receptors (A2A R) play a key role in modulating dopamine-dependent locomotor activity, as heralded by the sensitization of locomotor activity upon chronic A2A R blockade, which is associated with elevated dopamine levels and altered corticostriatal synaptic plasticity. Since the orphan receptor GPR37 has been shown to modulate A2A R function in vivo, we aimed to test whether the A2A R-mediated sensitization of locomotor activity is GPR37-dependent and involves adaptations of synaptic plasticity. To this end, we administered a selective A2A R antagonist, SCH58261 (1 mg/kg, i.p.), daily for 14 days, and the locomotor sensitization, striatum-dependent cued learning, and corticostriatal synaptic plasticity (i.e., long-term depression) were compared in wild-type and GPR37-/- mice. Notably, GPR37 deletion promoted A2A R-associated locomotor sensitization but not striatum-dependent cued learning revealed upon chronic SCH58261 treatment of mice. Furthermore, chronic A2A R blockade potentiated striatal long-term depression in corticostriatal synapses of GPR37-/- but not of wild-type mice, thus correlating well with neurochemical alterations of the adenosinergic system. Overall, these results revealed the importance of GPR37 regulating A2A R-dependent locomotor sensitization and synaptic plasticity in the basal ganglia circuitry. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells.

  • Laura Fernández-Alacid‎ et al.
  • Journal of neurochemistry‎
  • 2009‎

Activation of G protein-gated inwardly-rectifying K(+) (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABA(B)) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABA(B) receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABA(B) receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, post-synaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The post-synaptic association of GIRK subunits with GABA(B) receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At pre-synaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABA(B) receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABA(B) receptors. The association of GIRK channels and GABA(B) receptors with excitatory synapses at both post- and pre-synaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: