Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Relevance of Abnormal KCNN1 Expression and Osmotic Hypersensitivity in Ewing Sarcoma.

  • Sebastian Fuest‎ et al.
  • Cancers‎
  • 2022‎

Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.


Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR).

  • Nicola Mitwasi‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Chimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough therapy for hematological malignancies. Despite their success, clinical experience has revealed several challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens, should be considered to further improve CAR T-cell therapy for B-ALL. In this paper, we address both issues by investigating the use of CD10 as a therapeutic target for B-ALL with our switchable UniCAR system. The UniCAR platform is a modular platform that depends on the presence of two elements to function. These include UniCAR T-cells and the target modules (TMs), which cross-link the T-cells to their respective targets on tumor cells. The TMs function as keys that control the switchability of UniCAR T-cells. Here, we demonstrate that UniCAR T-cells, armed with anti-CD10 TM, can efficiently kill B-ALL cell lines, as well as patient-derived B-ALL blasts, thereby highlighting the exciting possibility for using CD10 as an emerging therapeutic target for B-cell malignancies.


"UniCAR"-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells.

  • Nicola Mitwasi‎ et al.
  • Scientific reports‎
  • 2020‎

Antigen-specific redirection of immune effector cells with chimeric antigen receptors (CARs) demonstrated high therapeutic potential for targeting cancers of different origins. Beside CAR-T cells, natural killer (NK) cells represent promising alternative effectors that can be combined with CAR technology. Unlike T cells, primary NK cells and the NK cell line NK-92 can be applied as allogeneic off-the-shelf products with a reduced risk of toxicities. We previously established a modular universal CAR (UniCAR) platform which consists of UniCAR-expressing immune cells that cannot recognize target antigens directly but are redirected by a tumour-specific target module (TM). The TM contains an antigen-binding moiety fused to a peptide epitope which is recognized by the UniCAR molecule, thereby allowing an on/off switch of CAR activity, and facilitating flexible targeting of various tumour antigens depending on the presence and specificity of the TM. Here, we provide proof of concept that it is feasible to generate a universal off-the-shelf cellular therapeutic based on UniCAR NK-92 cells targeted to tumours expressing the disialoganglioside GD2 by GD2-specific TMs that are either based on an antibody-derived single-chain fragment variable (scFv) or an IgG4 backbone. Redirected UniCAR NK-92 cells induced specific killing of GD2-expressing cells in vitro and in vivo, associated with enhanced production of interferon-γ. Analysis of radiolabelled proteins demonstrated that the IgG4-based format increased the in vivo half-life of the TM markedly in comparison to the scFv-based molecule. In summary, UniCAR NK-92 cells represent a universal off-the-shelf platform that is highly effective and flexible, allowing the use of different TM formats for specific tumour targeting.


Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells.

  • Haidy A Saleh‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.


Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: results from a phase II trial.

  • Edoardo Pennesi‎ et al.
  • Leukemia‎
  • 2022‎

Inotuzumab Ozogamicin is a CD22-directed antibody conjugated to calicheamicin, approved in adults with relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (BCP-ALL). Patients aged 1-18 years, with R/R CD22 + BCP-ALL were treated at the RP2D of 1.8 mg/m2. Using a single-stage design, with an overall response rate (ORR) ≤ 30% defined as not promissing and ORR > 55% as expected, 25 patients needed to be recruited to achieve 80% power at 0.05 significance level. Thirty-two patients were enrolled, 28 were treated, 27 were evaluable for response. The estimated ORR was 81.5% (95%CI: 61.9-93.7%), and 81.8% (18/22) of the responding subjects were minimal residual disease (MRD) negative. The study met its primary endpoint. Median follow up of survivors was 16 months (IQR: 14.49-20.07). One year Event Free Survival was 36.7% (95% CI: 22.2-60.4%), and Overall Survival was 55.1% (95% CI: 39.1-77.7%). Eighteen patients received consolidation (with HSCT and/or CAR T-cells therapy). Sinusoidal obstructive syndrome (SOS) occurred in seven patients. MRD negativity seemed correlated to calicheamicin sensitivity in vitro, but not to CD22 surface expression, saturation, or internalization. InO was effective in this population. The most relevant risk was the occurrence of SOS, particularly when InO treatment was followed by HSCT.


Association of Country-Specific Socioeconomic Factors With Survival of Patients Who Experience Severe Classic Acute Graft-vs.-Host Disease After Allogeneic Hematopoietic Cell Transplantation. An Analysis From the Transplant Complications Working Party of the EBMT.

  • Andrzej Frankiewicz‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Acute graft-vs.-host disease (aGvHD) is one of the most frequent causes of transplant-related mortality (TRM) after allogeneic hematopoietic cell transplantation (alloHCT). Its treatment is complex and costly. The aim of this study was to retrospectively analyze the impact of country-specific socioeconomic factors on outcome of patients who experience severe aGvHD. Adults with hematological malignancies receiving alloHCT from either HLA-matched siblings (n = 1,328) or unrelated donors (n = 2,824) developing grade 3 or 4 aGvHD were included. In univariate analysis, the probability of TRM at 2 years was increased for countries with lower current Health Care Expenditure (HCE, p = 0.04), lower HCE as % of Gross Domestic Product per capita (p = 0.003) and lower values of the Human Development Index (p = 0.02). In a multivariate model, the risk of TRM was most strongly predicted by current HCE (HR = 0.76, p = 0.006). HCE >median was also associated with reduced risk of the overall mortality (HR 0.73, p = 0.0006) and reduced risk of treatment failure (either relapse or TRM; HR 0.77, p = 0.004). We conclude that country-specific socioeconomic factors, in particular current HCE, are strongly associated with survival of patients who experience severe aGvHD.


Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis.

  • Franco Locatelli‎ et al.
  • Blood advances‎
  • 2022‎

The safety and efficacy of blinatumomab, a CD3/CD19-directed bispecific molecule, were examined in an open-label, single-arm, expanded access study (RIALTO). Children (>28 days and <18 years) with CD19+ relapsed/refractory B-cell precursor acute lymphoblastic leukemia (R/R B-ALL) received up to 5 cycles of blinatumomab by continuous infusion (cycle: 4 weeks on/2 weeks off). The primary end point was incidence of adverse events. Secondary end points included complete response (CR) and measurable residual disease (MRD) response within the first 2 cycles and relapse-free survival (RFS), overall survival (OS), and allogeneic hematopoietic stem cell transplant (alloHSCT) after treatment. At final data cutoff (10 January 2020), 110 patients were enrolled (median age, 8.5 years; 88% had ≥5% baseline blasts). A low incidence of grade 3 or 4 cytokine release syndrome (n = 2; 1.8%) and neurologic events (n = 4; 3.6%) was reported; no blinatumomab-related fatal adverse events were recorded. The probability of response was not affected by the presence of cytogenetic/molecular abnormalities. Median OS was 14.6 months (95% confidence interval [CI]: 11.0-not estimable) and was significantly better for MRD responders vs MRD nonresponders (not estimable vs 9.3; hazard ratio, 0.18; 95% CI: 0.08-0.39). Of patients achieving CR after 2 cycles, 73.5% (95% CI: 61.4%-83.5%) proceeded to alloHSCT. One-year OS probability was higher for patients who received alloHSCT vs without alloHSCT after blinatumomab (87% vs 29%). These findings support the use of blinatumomab as a safe and efficacious treatment of pediatric R/R B-ALL. This trial was registered at www.clinicaltrials.gov as #NCT02187354.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: