Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Lung cancer stem cell lose their stemness default state after exposure to microgravity.

  • Maria Elena Pisanu‎ et al.
  • BioMed research international‎
  • 2014‎

Microgravity influences cell differentiation by modifying the morphogenetic field in which stem cells are embedded. Preliminary data showed indeed that stem cells are committed to selective differentiation when exposed to real or simulated microgravity. Our study provides evidence that a similar event occurs when cancer stem cells (CSCs) are cultured in microgravity. In the same time, a significant increase in apoptosis was recorded: those data point out that microgravity rescues CSCs from their relative quiescent state, inducing CSCs to lose their stemness features, as documented by the decrease in ALDH and the downregulation of both Nanog and Oct-4 genes. Those traits were stably acquired and preserved by CSCs when cells were placed again on a 1 g field. Studies conducted in microgravity on CSCs may improve our understanding of the fundamental role exerted by biophysical forces in cancer cell growth and function.


The small molecule SI113 synergizes with mitotic spindle poisons in arresting the growth of human glioblastoma multiforme.

  • Claudia Abbruzzese‎ et al.
  • Oncotarget‎
  • 2017‎

Glioblastoma multiforme (GBM) is the deadliest brain tumor. State-of-art GBM therapy often fails to ensure control of a disease characterized by high frequency of recurrences and progression. In search for novel therapeutic approaches, we assayed the effect of compounds from a cancer drug library on the ADF GBM cell line, establishing their elevated sensitivity to mitotic spindle poisons. Our previous work showed that the effectiveness of the spindle poison paclitaxel in inhibiting cancer cell growth was dependent on the expression of RANBP1, a regulatory target of the serine/threonine kinase SGK1. Recently, we developed the small molecule SI113 to inhibit SGK1 activity. Therefore, we explored the outcome of the association between SI113 and selected spindle poisons, finding that these drugs generated a synergistic cytotoxic effect in GBM cells, drastically reducing their viability and clonogenic capabilities in vitro, as well as inhibiting tumor growth in vivo. We also defined the molecular bases of such a synergistic effect. Because SI113 displays low systemic toxicity, yet strong activity in potentiating the effect of radiotherapy in GBM cells, we believe that this drug could be a strong candidate for clinical trials, with the aim to add it to the current GBM therapeutic approaches.


miRNAs as Candidate Biomarker for the Accurate Detection of Atypical Endometrial Hyperplasia/Endometrial Intraepithelial Neoplasia.

  • Simona Giglio‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Endometrial cancer is the most common gynecologic malignancy in developed countries. Estrogen-dependent tumors (type I, endometrioid) account for 80% of cases and non-estrogen-dependent (type II, non-endometrioid) account for the rest. Endometrial cancer type I is generally thought to develop via precursor lesions along with the increasing accumulation of molecular genetic alterations. Endometrial hyperplasia with atypia/Endometrial Intraepithelial Neoplasia is the least common type of hyperplasia but it is the type most likely to progress to type I cancer, whereas endometrial hyperplasia without atypia rarely progresses to carcinoma. MicroRNAs are a class of small, non-coding, single-stranded RNAs that negatively regulate gene expression mainly binding to 3'-untranslated region of target mRNAs. In the current study, we identified a microRNAs signature (miR-205, miR-146a, miR-1260b) able to discriminate between atypical and typical endometrial hyperplasia in two independent cohorts of patients. The identification of molecular markers that can distinguish between these two distinct pathological conditions is considered to be highly useful for the clinical management of patients because hyperplasia with an atypical change is associated with a higher risk of developing cancer. We show that the combination of miR-205, -146a, and -1260b has the best predictive power in discriminating these two conditions (>90%). With the aim to find a biological role for these three microRNAs, we focused our attention on a common putative target involved in endometrial carcinogenesis: the oncosuppressor gene SMAD4. We showed that miRs-146a,-205, and-1260b directly target SMAD4 and their enforced expression induced proliferation and migration of Endometrioid Cancer derived cell lines, Hec1a cells. These data suggest that microRNAs-mediated impairment of the TGF-β pathway, due to inhibition of its effector molecule SMAD4, is a relevant molecular alteration in endometrial carcinoma development. Our findings show a potential diagnostic role of this microRNAs signature for the accurate diagnosis of Endometrial hyperplasia with atypia/Endometrial Intraepithelial Neoplasia and improve the understanding of their pivotal role in SMAD4 regulation.


Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma.

  • Luigi Fattore‎ et al.
  • Oncotarget‎
  • 2015‎

Patients with metastatic melanoma bearing V600 mutations in BRAF oncogene clinically benefit from the treatment with BRAF inhibitors alone or in combination with MEK inhibitors. However, a limitation to such treatment is the occurrence of resistance. Tackling the adaptive changes helping cells survive from drug treatment may offer new therapeutic opportunities. Very recently the ErbB3 receptor has been shown to act as a central node promoting survival of BRAF mutated melanoma. In this paper we first demonstrate that ErbB3/AKT hyperphosphorylation occurs in BRAF mutated melanoma cell lines following exposure to BRAF and/or MEK inhibitors. This strongly correlates with increased transcriptional activation of its ligand neuregulin. Anti-ErbB3 antibodies impair the establishment of de novo cell resistance to BRAF inhibition in vitro. In order to more potently ablate ErbB3 activity we used a combination of two anti-ErbB3 antibodies directed against distinct epitopes of its extracellular domain. These two antibodies in combo with BRAF/MEK inhibitors potently inhibit in vitro cell growth and tumor regrowth after drug withdrawal in an in vivo xenograft model. Importantly, residual tumor masses from mice treated by the antibodies and BRAF/ERK inhibitors combo are characterized almost exclusively by large necrotic areas with limited residual areas of tumor growth. Taken together, our findings support the concept that triple therapy directed against BRAF/MEK/ErbB3 may be able to provide durable control of BRAF mutated metastatic melanoma.


Inhibition of Stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF-mutated melanoma.

  • Maria Elena Pisanu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Combination therapy with BRAF and MEK inhibitors significantly improves survival in BRAF mutated melanoma patients but is unable to prevent disease recurrence due to the emergence of drug resistance. Cancer stem cells (CSCs) have been involved in these long-term treatment failures. We previously reported in lung cancer that CSCs maintenance is due to altered lipid metabolism and dependent upon Stearoyl-CoA-desaturase (SCD1)-mediated upregulation of YAP and TAZ. On this ground, we investigated the role of SCD1 in melanoma CSCs.


An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis.

  • Veronica Gatti‎ et al.
  • Cells‎
  • 2020‎

HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis.


MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1.

  • Enrica Vescarelli‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2020‎

Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance.


ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis.

  • Claudia De Vitis‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2023‎

Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions.


The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

  • Donatella Malanga‎ et al.
  • Oncotarget‎
  • 2015‎

Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.


Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity.

  • Giuseppe Roscilli‎ et al.
  • Journal of translational medicine‎
  • 2016‎

Lung cancer is the leading cause of cancer related deaths and Malignant Pleural Effusion (MPE) is a frequent complication. Current therapies suffer from lack of efficacy in a great percentage of cases, especially when cancer is diagnosed at a late stage. Moreover patients' responses vary and the outcome is unpredictable. Therefore, the identification of patients who will benefit most of chemotherapy treatment is important for accurate prognostication and better outcome. In this study, using malignant pleural effusions (MPE) from non-small cell lung cancer (NSCLC) patients, we established a collection of patient-derived Adenocarcinoma cultures which were characterized for their sensitivity to chemotherapeutic drugs used in the clinical practice.


H-Ras gene takes part to the host immune response to COVID-19.

  • Salvatore Sciacchitano‎ et al.
  • Cell death discovery‎
  • 2021‎

Ras gene family members play a relevant role in cancer, especially when they are mutated. However, they may play additional roles in other conditions beside cancer. We performed gene expression analysis using the NanoString PanCancer IO 360 panel in the peripheral blood mononuclear cell (PBMC) of six COVID-19 patients and we found that H-Ras gene was significantly upregulated, while both K-Ras and N-Ras genes were downregulated. In particular, H-Ras gene upregulation was more evident in COVID-19 patients with a more severe disease. We compared our results with those obtained by analyzing two different and independent datasets, including a total of 53 COVID-19 patients, in which the gene expression analysis was performed using the Immunology_V2 panel. Comparative analysis of the H-Ras gene expression in these patients confirmed our preliminary results. In both of them, in fact, we were able to confirm the upregulation of the expression of the H-Ras gene. The exact role of this specific upregulation of the H-Ras gene in response to SARS-CoV-2 infection and its possible role in cancer still remains to be elucidated. In conclusion, H-Ras gene participates to the host immune response to SARS-CoV-2 virus infection, especially in patients affected by the most severe form of the COVID-19.


Gene signature and immune cell profiling by high-dimensional, single-cell analysis in COVID-19 patients, presenting Low T3 syndrome and coexistent hematological malignancies.

  • Salvatore Sciacchitano‎ et al.
  • Journal of translational medicine‎
  • 2021‎

Low T3 syndrome is frequent in patients admitted to intensive care units for critical illness and pneumonia. It has been reported also in patients with COVID-19, Hodgkin disease and chronic lymphocytic leukemia. We analyzed the clinical relevance of Low T3 syndrome in COVID-19 patients and, in particular, in those with associated hematological malignancies.


B4GALT1 Is a New Candidate to Maintain the Stemness of Lung Cancer Stem Cells.

  • Claudia De Vitis‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

According to the cancer stem cells (CSCs) hypothesis, a population of cancer cells with stem cell properties is responsible for tumor propagation, drug resistance, and disease recurrence. Study of the mechanisms responsible for lung CSCs propagation is expected to provide better understanding of cancer biology and new opportunities for therapy.


Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma.

  • Tobias L Haas‎ et al.
  • Cell stem cell‎
  • 2017‎

Functionally relevant markers of glioblastoma stem-like cells (GSCs) have potential for therapeutic targeting to treat this aggressive disease. Here we used generation and screening of thousands of monoclonal antibodies to search for receptors and signaling pathways preferentially enriched in GSCs. We identified integrin α7 (ITGA7) as a major laminin receptor in GSCs and in primary high-grade glioma specimens. Analyses of mRNA profiles in comprehensive datasets revealed that high ITGA7 expression negatively correlated with survival of patients with both low- and high-grade glioma. In vitro and in vivo analyses showed that ITGA7 plays a key functional role in growth and invasiveness of GSCs. We also found that targeting of ITGA7 by RNAi or blocking mAbs impaired laminin-induced signaling, and it led to a significant delay in tumor engraftment plus a strong reduction in tumor size and invasion. Our data, therefore, highlight ITGA7 as a glioblastoma biomarker and candidate therapeutic target.


Combination therapy with anti-ErbB3 monoclonal antibodies and EGFR TKIs potently inhibits non-small cell lung cancer.

  • Alessia Noto‎ et al.
  • Oncotarget‎
  • 2013‎

Personalized therapy of advanced non-small cell lung cancer (NSCLC) has been improved by the introduction of EGFR tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib. EGFR TKIs induce dramatic objective responses and increase survival in patients bearing sensitizing mutations in the EGFR intracytoplasmic tyrosine kinase domain. However, virtually all patients develop resistance, and this is responsible for disease relapse. Hence several efforts are being undertaken to understand the mechanisms of resistance in order to develop combination treatments capable to sensitize resistant cells to EGFR TKIs. Recent studies have suggested that upregulation of another member of the EGFR receptor family, namely ErbB3 is involved in drug resistance, through increased phosphorylation of its intracytoplasmic domain and activation of PI3K/AKT signaling. In this paper we first show, by using a set of malignant pleural effusion derived cell cultures (MPEDCC) from patients with lung adenocarcinoma, that surface ErbB3 expression correlates with increased AKT phosphorylation. Antibodies against ErbB3, namely A3, which we previously demonstrated to induce receptor internalization and degradation, inhibit growth and induce apoptosis only in cells overexpressing surface ErbB3. Furthermore, combination of anti-ErbB3 antibodies with EGFR TKIs synergistically affect cell proliferation in vitro, cause cell cycle arrest, up-regulate p21 expression and inhibit tumor growth in mouse xenografts. Importantly, potentiation of gefitinib by anti-ErbB3 antibodies occurs both in de novo and in ab initio resistant cells. Anti-ErbB3 mAbs strongly synergize also with the dual EGFR and HER2 inhibitor lapatinib. Our results suggest that combination treatment with EGFR TKI and antibodies against ErbB3 should be a promising approach to pursue in the clinic.


Circulating MMP11 and specific antibody immune response in breast and prostate cancer patients.

  • Giuseppe Roscilli‎ et al.
  • Journal of translational medicine‎
  • 2014‎

Tumor Associated Antigens are characterized by spontaneous immune response in cancer patients as a consequence of overexpression and epitope-presentation on MHC class I/II machinery. Matrix Metalloprotease 11 (MMP11) expression has been associated with poor prognosis for several cancer types, including breast and prostate cancer.


Thymic Epithelial Tumors as a Model of Networking: Development of a Synergistic Strategy for Clinical and Translational Research Purposes.

  • Enrico Melis‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Among the group of thymic epithelial tumors (TET), thymomas often show either uncertain or explicit malignant biological behavior, local invasiveness, and intrathoracic relapse and are often difficult to manage. From the initial stages, thymic carcinomas tend to show aggressive behavior and extrathoracic spread. Moreover, the interplay of epithelial cells and thymocytes in thymomas causes complex immune derangement and related systemic autoimmune diseases. Due to their rare occurrence and to the limited funding opportunities available for rare tumors, it is challenging to make advances in clinical and translational research in TET. The authors of this paper are all members of a multidisciplinary clinical and research thoracic tumor team. Strong input was given to the team by long-standing expertise in TET in the Pathology Department. In addition, thanks to the collaboration between research units at our Institute as well as to national collaborations, over the last 10 years we were able to perform several tissue-based research studies. The most recent studies focused on microRNA and on functional studies on the thymic carcinoma cell line 1889c. The recent implementation of our biobank now provides us with a new tool for networking collaborative research activities. Moreover, the participation in a worldwide community such as ITMIG (International Thymic Malignancy Interest Group) has allowed us to significantly contribute toward fundamental projects/research both in tissue-based studies (The Cancer Genome Atlas) and in clinical studies (TNM staging of TET). Our achievements derive from constant commitment and long-standing experience in diagnosis and research in TET. New perspectives opened up due to the establishment of national [the Italian Collaborative Group for ThYmic MalignanciEs (TYME)] and European reference networks such as EURACAN, for an empowered joint clinical action in adult solid rare tumors. The challenge we face still lies in the advancement of clinical and basic science in thymic epithelial malignancies.


Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients.

  • Andrea Sacconi‎ et al.
  • Cell death & disease‎
  • 2021‎

Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19 present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13, IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK), and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an increased gene expression linked to Interferon α, γ, α/β response and signaling which paired with aberrant cell cycle regulation in cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in PBMCs of COVID-19 cancer patients.


Deconvolution of malignant pleural effusions immune landscape unravels a novel macrophage signature associated with worse clinical outcome in lung adenocarcinoma patients.

  • Sara Bruschini‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Immune checkpoint inhibitors are still unable to provide clinical benefit to the large majority of non-small cell lung cancer (NSCLC) patients. A deeper characterization of the tumor immune microenvironment (TIME) is expected to shed light on the mechanisms of cancer immune evasion and resistance to immunotherapy. Here, we exploited malignant pleural effusions (MPEs) from lung adenocarcinoma (LUAD) patients as a model system to decipher TIME in metastatic NSCLC.


Renal cancer: new models and approach for personalizing therapy.

  • Simona di Martino‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Clear cell RCC (ccRCC) accounts for approximately 75% of the renal cancer cases. Surgery treatment seems to be the best efficacious approach for the majority of patients. However, a consistent fraction (30%) of cases progress after surgery with curative intent. It is currently largely debated the use of adjuvant therapy for high-risk patients and the clinical and molecular parameters for stratifying beneficiary categories. In addition, the treatment of advanced forms lacks reliable driver biomarkers for the appropriated therapeutic choice. Thus, renal cancer patient management urges predictive molecular indicators and models for therapy-decision making.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: