Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.

  • Matthew A Deardorff‎ et al.
  • Nature‎
  • 2012‎

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Annexin A2 is required for the early steps of cytokinesis.

  • Christelle Benaud‎ et al.
  • EMBO reports‎
  • 2015‎

Cytokinesis requires the formation of an actomyosin contractile ring between the two sets of sister chromatids. Annexin A2 is a calcium- and phospholipid-binding protein implicated in cortical actin remodeling. We report that annexin A2 accumulates at the equatorial cortex at the onset of cytokinesis and depletion of annexin A2 results in cytokinetic failure, due to a defective cleavage furrow assembly. In the absence of annexin A2, the small GTPase RhoA-which regulates cortical cytoskeletal rearrangement-fails to form a compact ring at the equatorial plane. Furthermore, annexin A2 is required for cortical localization of the RhoGEF Ect2 and to maintain the association between the equatorial cortex and the central spindle. Our results demonstrate that annexin A2 is necessary in the early phase of cytokinesis. We propose that annexin A2 participates in central spindle-equatorial plasma membrane communication.


CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition.

  • Mohammed El Dika‎ et al.
  • Developmental biology‎
  • 2014‎

CDC6 is essential for S-phase to initiate DNA replication. It also regulates M-phase exit by inhibiting the activity of the major M-phase protein kinase CDK1. Here we show that addition of recombinant CDC6 to Xenopus embryo cycling extract delays the M-phase entry and inhibits CDK1 during the whole M-phase. Down regulation of endogenous CDC6 accelerates the M-phase entry, abolishes the initial slow and progressive phase of histone H1 kinase activation and increases the level of CDK1 activity during the M-phase. All these effects are fully rescued by the addition of recombinant CDC6 to the extracts. Diminution of CDC6 level in mouse zygotes by two different methods results in accelerated entry into the first cell division showing physiological relevance of CDC6 in intact cells. Thus, CDC6 behaves as CDK1 inhibitor regulating not only the M-phase exit, but also the M-phase entry and progression via limiting the level of CDK1 activity. We propose a novel mechanism of M-phase entry controlled by CDC6 and counterbalancing cyclin B-mediated CDK1 activation. Thus, CDK1 activation proceeds with concomitant inhibition by CDC6, which tunes the timing of the M-phase entry during the embryonic cell cycle.


Overexpression of active Aurora-C kinase results in cell transformation and tumour formation.

  • Jabbar Khan‎ et al.
  • PloS one‎
  • 2011‎

Aurora kinases belong to a conserved family of serine/threonine kinases key regulators of cell cycle progression. Aurora-A and Aurora-B are expressed in somatic cells and involved mainly in mitosis while Aurora-C is expressed during spermatogenesis and oogenesis and is involved in meiosis. Aurora-C is hardly detectable in normal somatic cells. However all three kinases are overexpressed in many cancer lines. Aurora-A possesses an oncogenic activity while Aurora-B does not. Here we investigated whether Aurora-C possesses such an oncogenic activity. We report that overexpression of Aurora-C induces abnormal cell division resulting in centrosome amplification and multinucleation in both transiently transfected cells and in stable cell lines. Only stable NIH3T3 cell clones overexpressing active Aurora-C formed foci of colonies when grown on soft agar, indicating that a gain of Aurora-C activity is sufficient to transform cells. Furthermore, we reported that NIH-3T3 stable cell lines overexpressing Aurora-C induced tumour formation when injected into nude mice, demonstrating the oncogenic activity of enzymatically active Aurora kinase C. Interestingly enough tumor aggressiveness was positively correlated with the quantity of active kinase, making Aurora-C a potential anti-cancer therapeutic target.


PRP4 is a spindle assembly checkpoint protein required for MPS1, MAD1, and MAD2 localization to the kinetochores.

  • Emilie Montembault‎ et al.
  • The Journal of cell biology‎
  • 2007‎

The spindle checkpoint delays anaphase onset until every chromosome kinetochore has been efficiently captured by the mitotic spindle microtubules. In this study, we report that the human pre-messenger RNA processing 4 (PRP4) protein kinase associates with kinetochores during mitosis. PRP4 depletion by RNA interference induces mitotic acceleration. Moreover, we frequently observe lagging chromatids during anaphase leading to aneuploidy. PRP4-depleted cells do not arrest in mitosis after nocodazole treatment, indicating a spindle assembly checkpoint (SAC) failure. Thus, we find that PRP4 is necessary for recruitment or maintenance of the checkpoint proteins MPS1, MAD1, and MAD2 at the kinetochores. Our data clearly identify PRP4 as a previously unrecognized kinetochore component that is necessary to establish a functional SAC.


Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes.

  • Ana Latorre-Pellicer‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.


MAU2 and NIPBL Variants Impair the Heterodimerization of the Cohesin Loader Subunits and Cause Cornelia de Lange Syndrome.

  • Ilaria Parenti‎ et al.
  • Cell reports‎
  • 2020‎

The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations in NIPBL account for most cases of the rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report a MAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus. Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable for normal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fatal outcome of an out-of-frame single nucleotide duplication in NIPBL, engineered in two different cell lines, alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interact with MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protective against out-of-frame mutations that is potentially relevant for other genetic conditions.


Transcriptional Alterations in X-Linked Dystonia-Parkinsonism Caused by the SVA Retrotransposon.

  • Jelena Pozojevic‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder that manifests as adult-onset dystonia combined with parkinsonism. A SINE-VNTR-Alu (SVA) retrotransposon inserted in an intron of the TAF1 gene reduces its expression and alters splicing in XDP patient-derived cells. As a consequence, increased levels of the TAF1 intron retention transcript TAF1-32i can be found in XDP cells as compared to healthy controls. Here, we investigate the sequence of the deep intronic region included in this transcript and show that it is also present in cells from healthy individuals, albeit in lower amounts than in XDP cells, and that it undergoes degradation by nonsense-mediated mRNA decay. Furthermore, we investigate epigenetic marks (e.g., DNA methylation and histone modifications) present in this intronic region and the spanning sequence. Finally, we show that the SVA evinces regulatory potential, as demonstrated by its ability to repress the TAF1 promoter in vitro. Our results enable a better understanding of the disease mechanisms underlying XDP and transcriptional alterations caused by SVA retrotransposons.


Missense and truncating variants in CHD5 in a dominant neurodevelopmental disorder with intellectual disability, behavioral disturbances, and epilepsy.

  • Ilaria Parenti‎ et al.
  • Human genetics‎
  • 2021‎

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology.

  • Yulia Kargapolova‎ et al.
  • Nature communications‎
  • 2021‎

Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.


Identification and Functional Characterization of Two Intronic NIPBL Mutations in Two Patients with Cornelia de Lange Syndrome.

  • María E Teresa-Rodrigo‎ et al.
  • BioMed research international‎
  • 2016‎

Cornelia de Lange syndrome (CdLS) is a rare genetically heterogeneous disorder with a high phenotypic variability including mental retardation, developmental delay, and limb malformations. The genetic causes in about 30% of patients with CdLS are still unknown. We report on the functional characterization of two intronic NIPBL mutations in two patients with CdLS that do not affect a conserved splice-donor or acceptor site. Interestingly, mRNA analyses showed aberrantly spliced transcripts missing exon 28 or 37, suggesting the loss of the branch site by the c.5329-15A>G transition and a disruption of the polypyrimidine by the c.6344del(-13)_(-8) deletion. While the loss of exon 28 retains the reading frame of the NIBPL transcript resulting in a shortened protein, the loss of exon 37 shifts the reading frame with the consequence of a premature stop of translation. Subsequent quantitative PCR analysis demonstrated a 30% decrease of the total NIPBL mRNA levels associated with the frameshift transcript. Consistent with our results, this patient shows a more severe phenotype compared to the patient with the aberrant transcript that retains its reading frame. Thus, intronic variants identified by sequencing analysis in CdLS diagnostics should carefully be examined before excluding them as nonrelevant to disease.


Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3.

  • Manuela Wuelling‎ et al.
  • Developmental biology‎
  • 2009‎

Trps1, the gene mutated in human Tricho-Rhino-Phalangeal syndrome, represents an atypical member of the GATA-family of transcription factors. Here we show that Trps1 interacts with Indian hedgehog (Ihh)/Gli3 signaling and regulates chondrocyte differentiation and proliferation. We demonstrate that Trps1 specifically binds to the transactivation domain of Gli3 in vitro and in vivo, whereas the repressor form of Gli3 does not interact with Trps1. A domain of 185aa within Trps1, containing three predicted zinc fingers, is sufficient for interaction with Gli3. Using different mouse models we find that in distal chondrocytes Trps1 and the repressor activity of Gli3 are required to expand distal cells and locate the expression domain of Parathyroid hormone related peptide. In columnar proliferating chondrocytes Trps1 and Ihh/Gli3 have an activating function. The differentiation of columnar and hypertrophic chondrocytes is supported by Trps1 independent of Gli3. Trps1 seems thus to organize chondrocyte differentiation interacting with different subsets of co-factors in distinct cell types.


Aurora A is involved in central spindle assembly through phosphorylation of Ser 19 in P150Glued.

  • David Reboutier‎ et al.
  • The Journal of cell biology‎
  • 2013‎

Knowledge of Aurora A kinase functions is limited to premetaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. The involvement of Aurora A in events after metaphase has only been suggested because appropriate experiments are technically difficult. We report here the design of the first human Aurora A kinase (as-AurA) engineered by chemical genetics techniques. This kinase is fully functional biochemically and in cells, and is rapidly and specifically inhibited by the ATP analogue 1-Naphthyl-PP1 (1-Na-PP1). By treating cells exclusively expressing the as-AurA with 1-Na-PP1, we discovered that Aurora A is required for central spindle assembly in anaphase through phosphorylation of Ser 19 of P150Glued. This paper thus describes a new Aurora A function that takes place after the metaphase-to-anaphase transition and a new powerful tool to search for and study new Aurora A functions.


HACE1 deficiency leads to structural and functional neurodevelopmental defects.

  • Vanja Nagy‎ et al.
  • Neurology. Genetics‎
  • 2019‎

We aim to characterize the causality and molecular and functional underpinnings of HACE1 deficiency in a mouse model of a recessive neurodevelopmental syndrome called spastic paraplegia and psychomotor retardation with or without seizures (SPPRS).


mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome.

  • Beatriz Puisac‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction). Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys), showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers.


Identifying genetic modifiers of age-associated penetrance in X-linked dystonia-parkinsonism.

  • Björn-Hergen Laabs‎ et al.
  • Nature communications‎
  • 2021‎

X-linked dystonia-parkinsonism is a neurodegenerative disorder caused by a founder retrotransposon insertion, in which a polymorphic hexanucleotide repeat accounts for ~50% of age at onset variability. Employing a genome-wide association study to identify additional factors modifying age at onset, we establish that three independent loci are significantly associated with age at onset (p < 5 × 10-8). The lead single nucleotide polymorphisms collectively account for 25.6% of the remaining variance not explained by the hexanucleotide repeat and 13.0% of the overall variance in age at onset in X-linked dystonia-parkinsonism with the protective alleles delaying disease onset by seven years. These regions harbor or lie adjacent to MSH3 and PMS2, the genes that were recently implicated in modifying age at onset in Huntington's disease, likely through a common pathway influencing repeat instability. Our work indicates the existence of three modifiers of age at onset in X-linked dystonia-parkinsonism that likely affect the DNA mismatch repair pathway.


Size matters! Aurora A controls Drosophila larval development.

  • Lucie Vaufrey‎ et al.
  • Developmental biology‎
  • 2018‎

In metazoans, organisms arising from a fertilized egg, the embryo will develop through multiple series of cell divisions, both symmetric and asymmetric, leading to differentiation. Aurora A is a serine threonine kinase highly involved in such divisions. While intensively studied at the cell biology level, its function in the development of a whole organism has been neglected. Here we investigated the pleiotropic effect of Aurora A loss-of-function in Drosophila larval early development. We report that Aurora A is required for proper larval development timing control through direct and indirect means. In larval tissues, Aurora A is required for proper symmetric division rate and eventually development speed as we observed in central brain, wing disc and ring gland. Moreover, Aurora A inactivation induces a reduction of ecdysteroids levels and a pupariation delay as an indirect consequence of ring gland development deceleration. Finally, although central brain development is initially restricted, we confirmed that brain lobe size eventually increases due to additive phenotypes: delayed pupariation and over-proliferation of cells with an intermediate cell-identity between neuroblast and ganglion mother cell resulting from defective asymmetric neuroblast cell division.


RAD21 mutations cause a human cohesinopathy.

  • Matthew A Deardorff‎ et al.
  • American journal of human genetics‎
  • 2012‎

The evolutionarily conserved cohesin complex was originally described for its role in regulating sister-chromatid cohesion during mitosis and meiosis. Cohesin and its regulatory proteins have been implicated in several human developmental disorders, including Cornelia de Lange (CdLS) and Roberts syndromes. Here we show that human mutations in the integral cohesin structural protein RAD21 result in a congenital phenotype consistent with a "cohesinopathy." Children with RAD21 mutations display growth retardation, minor skeletal anomalies, and facial features that overlap findings in individuals with CdLS. Notably, unlike children with mutations in NIPBL, SMC1A, or SMC3, these individuals have much milder cognitive impairment than those with classical CdLS. Mechanistically, these mutations act at the RAD21 interface with the other cohesin proteins STAG2 and SMC1A, impair cellular DNA damage response, and disrupt transcription in a zebrafish model. Our data suggest that, compared to loss-of-function mutations, dominant missense mutations result in more severe functional defects and cause worse structural and cognitive clinical findings. These results underscore the essential role of RAD21 in eukaryotes and emphasize the need for further understanding of the role of cohesin in human development.


An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis.

  • Molly M Wilson‎ et al.
  • Science advances‎
  • 2021‎

The epithelial-mesenchymal transition (EMT) and primary ciliogenesis induce stem cell properties in basal mammary stem cells (MaSCs) to promote mammogenesis, but the underlying mechanisms remain incompletely understood. Here, we show that EMT transcription factors promote ciliogenesis upon entry into intermediate EMT states by activating ciliogenesis inducers, including FGFR1. The resulting primary cilia promote ubiquitination and inactivation of a transcriptional repressor, GLIS2, which localizes to the ciliary base. We show that GLIS2 inactivation promotes MaSC stemness, and GLIS2 is required for normal mammary gland development. Moreover, GLIS2 inactivation is required to induce the proliferative and tumorigenic capacities of the mammary tumor–initiating cells (MaTICs) of claudin-low breast cancers. Claudin-low breast tumors can be segregated from other breast tumor subtypes based on a GLIS2-dependent gene expression signature. Collectively, our findings establish molecular mechanisms by which EMT programs induce ciliogenesis to control MaSC and MaTIC stemness, mammary gland development, and claudin-low breast cancer formation.


Systematic analysis and prediction of genes associated with monogenic disorders on human chromosome X.

  • Elsa Leitão‎ et al.
  • Nature communications‎
  • 2022‎

Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints, exon and promoter conservation, expression, and paralogues, and report 127 genes sharing one or more attributes with known chrX disorder genes. Using machine learning classifiers trained to distinguish disease-associated from dispensable genes, we classify 247 genes, including 115 of the 127, as having high probability of being disease-associated. We provide evidence of an excess of variants in predicted genes in existing databases. Finally, we report damaging variants in CDK16 and TRPC5 in patients with intellectual disability or autism spectrum disorders. This study predicts large-scale gene-disease associations that could be used for prioritization of X-linked pathogenic variants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: