Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy.

  • Theo A Knijnenburg‎ et al.
  • Scientific reports‎
  • 2016‎

Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present 'Logic Optimization for Binary Input to Continuous Output' (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models.


Pathway-based dissection of the genomic heterogeneity of cancer hallmarks' acquisition with SLAPenrich.

  • Francesco Iorio‎ et al.
  • Scientific reports‎
  • 2018‎

Cancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages. Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks' predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: