Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Toll-Like Receptor Signaling Drives Btk-Mediated Autoimmune Disease.

  • Jasper Rip‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Bruton's tyrosine kinase (Btk) is a signaling molecule involved in development and activation of B cells through B-cell receptor (BCR) and Toll-like receptor (TLR) signaling. We have previously shown that transgenic mice that overexpress human Btk under the control of the CD19 promoter (CD19-hBtk) display spontaneous germinal center formation, increased cytokine production, anti-nuclear autoantibodies (ANAs), and systemic autoimsmune disease upon aging. As TLR and BCR signaling are both implicated in autoimmunity, we studied their impact on splenic B cells. Using phosphoflow cytometry, we observed that phosphorylation of ribosomal protein S6, a downstream Akt target, was increased in CD19-hBtk B cells following BCR stimulation or combined BCR/TLR stimulation, when compared with wild-type (WT) B cells. The CD19-hBtk transgene enhanced BCR-induced B cell survival and proliferation, but had an opposite effect following TLR9 or combined BCR/TLR9 stimulation. Although the expression of TLR9 was reduced in CD19-hBtk B cells compared to WT B cells, a synergistic effect of TLR9 and BCR stimulation on the induction of CD25 and CD80 was observed in CD19-hBtk B cells. In splenic follicular (Fol) and marginal zone (MZ) B cells from aging CD19-hBtk mice BCR signaling stimulated in vitro IL-10 production in synergy with TLR4 and particularly TLR9 stimulation, but not with TLR3 and TLR7. The enhanced capacity of CD19-hBtk Fol B cells to produce the pro-inflammatory cytokines IFNγ and IL-6 compared with WT B cells was however not further increased following in vitro BCR or TLR9 stimulation. Finally, we used crosses with mice deficient for the TLR-associated molecule myeloid differentiation primary response 88 (MyD88) to show that TLR signaling was crucial for spontaneous formation of germinal centers, increased IFNγ, and IL-6 production by B cells and anti-nuclear autoantibody induction in CD19-hBtk mice. Taken together, we conclude that high Btk expression does not only increase B cell survival following BCR stimulation, but also renders B cells more sensitive to TLR stimulation, resulting in increased expression of CD80, and IL-10 in activated B cells. Although BCR-TLR interplay is complex, our findings show that both signaling pathways are crucial for the development of pathology in a Btk-dependent model for systemic autoimmune disease.


Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate.

  • Jose Luis Sardina‎ et al.
  • Cell stem cell‎
  • 2018‎

Here, we report DNA methylation and hydroxymethylation dynamics at nucleotide resolution using C/EBPα-enhanced reprogramming of B cells into induced pluripotent cells (iPSCs). We observed successive waves of hydroxymethylation at enhancers, concomitant with a decrease in DNA methylation, suggesting active demethylation. Consistent with this finding, ablation of the DNA demethylase Tet2 almost completely abolishes reprogramming. C/EBPα, Klf4, and Tfcp2l1 each interact with Tet2 and recruit the enzyme to specific DNA sites. During reprogramming, some of these sites maintain high levels of 5hmC, and enhancers and promoters of key pluripotency factors become demethylated as early as 1 day after Yamanaka factor induction. Surprisingly, methylation changes precede chromatin opening in distinct chromatin regions, including Klf4 bound sites, revealing a pioneer factor activity associated with alternation in DNA methylation. Rapid changes in hydroxymethylation similar to those in B cells were also observed during compound-accelerated reprogramming of fibroblasts into iPSCs, highlighting the generality of our observations.


Dietary restriction and fasting arrest B and T cell development and increase mature B and T cell numbers in bone marrow.

  • Shushimita Shushimita‎ et al.
  • PloS one‎
  • 2014‎

Dietary restriction (DR) delays ageing and extends life span. Both long- and short-term DR, as well as short-term fasting provide robust protection against many "neuronal and surgery related damaging phenomena" such as Parkinson's disease and ischemia-reperfusion injury. The exact mechanism behind this phenomenon has not yet been elucidated. Its anti-inflammatory actions prompted us to thoroughly investigate the consequences of DR and fasting on B and T cell compartments in primary and secondary lymphoid organs of male C57Bl/6 mice. In BM we found that DR and fasting cause a decrease in the total B cell population and arrest early B cell development, while increasing the number of recirculating mature B cells. In the fasting group, a significant reduction in peripheral B cell counts was observed in both spleen and mesenteric lymph nodes (mLN). Thymopoiesis was arrested significantly at double negative DN2 stage due to fasting, whereas DR resulted in a partial arrest of thymocyte development at the DN4 stage. Mature CD3(+) T cell populations were increased in BM and decreased in both spleen and mLN. Thus, DR arrests B cell development in the BM but increases the number of recirculating mature B cells. DR also arrests maturation of T cells in thymus, resulting in depletion of mature T cells from spleen and mLN while recruiting them to the BM. The functional relevance in relation to protection against organ damage needs to be determined.


Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions.

  • Ralph Stadhouders‎ et al.
  • PLoS biology‎
  • 2014‎

During B cell development, the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin κ light chain (Igκ) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline V(κ) transcription. To investigate whether pre-BCR signaling modulates V(κ) accessibility through enhancer-mediated Igκ locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the κ enhancers robustly interact with the ∼3.2 Mb V(κ) region and its flanking sequences. Analyses in wild-type, Btk, and Slp65 single- and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igκ locus flanking sequences and increases interactions of the 3'κ enhancer with V(κ) genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and V(κ) genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used V(κ) genes, which are often marked by transcription factor E2a. We conclude that the κ enhancers interact with the V(κ) region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the V(κ) region, whereby the two enhancers play distinct roles.


Parallel sequencing lives, or what makes large sequencing projects successful.

  • Javier Quilez‎ et al.
  • GigaScience‎
  • 2017‎

T47D_rep2 and b1913e6c1_51720e9cf were 2 Hi-C samples. They were born and processed at the same time, yet their fates were very different. The life of b1913e6c1_51720e9cf was simple and fruitful, while that of T47D_rep2 was full of accidents and sorrow. At the heart of these differences lies the fact that b1913e6c1_51720e9cf was born under a lab culture of Documentation, Automation, Traceability, and Autonomy and compliance with the FAIR Principles. Their lives are a lesson for those who wish to embark on the journey of managing high-throughput sequencing data.


Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signaling.

  • Simar Pal Singh‎ et al.
  • Oncotarget‎
  • 2017‎

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature CD5+ B cells in blood. Spontaneous apoptosis of CLL cells in vitro has hampered in-depth investigation of CLL pathogenesis. Here we describe the generation of three monoclonal mouse cell lines, EMC2, EMC4 and EMC6, from the IgH.TEμ CLL mouse model based on sporadic expression of SV40 large T antigen. The cell lines exhibit a stable CD5+CD43+IgM+CD19+ CLL phenotype in culture and can be adoptively transferred into Rag1-/- mice. RNA-seq analysis revealed only minor differences between the cell lines and their primary tumors and suggested that NF-κB and mTOR signaling pathways were involved in cell line outgrowth. In vitro survival and proliferation was dependent on constitutive phosphorylation of Bruton's tyrosine kinase (Btk) at Y551/Y223, and Akt(S473). Treatment of the cell lines with small molecule inhibitors specific for Btk (ibrutinib) or PI3K (idelalisib), which is upstream of Akt, resulted in reduced viability, proliferation and fibronectin-dependent cell adhesion. Treatment of cell line-engrafted Rag1-/- mice with ibrutinib was associated with transient lymphocytosis, reduced splenomegaly and increased overall survival. Thus, by generating stable cell lines we established a novel platform for in vitro and in vivo investigation of CLL signal transduction and treatment modalities.


Gene expression profiling in mice with enforced Gata3 expression reveals putative targets of Gata3 in double positive thymocytes.

  • Jan Piet van Hamburg‎ et al.
  • Molecular immunology‎
  • 2009‎

The zinc-finger transcription factors Gata3 and ThPOK have both been implicated in positive selection of double positive (DP) thymocytes towards the CD4 lineage. As in the absence of Gata3, expression of ThPOK is lacking, Gata3 may directly regulate ThPOK expression. As ThPOK failed to promote CD4(+) lineage differentiation of Gata3-deficient cells, ThPOK cannot be the only Gata3 target gene essential for the induction of the CD4(+) lineage program. Therefore, it is conceivable that Gata3 is essential for selected DP T cells to reach the developmental stage at which ThPOK expression is induced. Here, we show that Gata3 overexpression does not affect ThPOK expression levels in DP or CD4(+) thymocytes, providing evidence that Gata3 does not directly regulate ThPOK. To identify additional target genes that clarify Gata3 function at the DP thymocyte stage, we performed gene expression profiling assays in wild-type mice and transgenice mice with enforced expression of Gata3, in the presence or absence of the MHC class II-restricted DO11.10 TCR. We found that Gata3 expression in DP cells undergoing positive selection was associated with downregulation of the V(D)J-recombination machinery genes Rag1, Rag2 and TdT. Moreover, Gata3 overexpression was associated with downregulation of many signaling molecules and the induction of modulators of TCR signaling, including Ctla-4 and thrombospondin 2. Together with our previous finding that Gata3 reduces expression of CD5, a negative regulator of TCR signaling, and upregulates TCR expression, these findings indicate that Gata3 in DP cells mainly functions to (i) terminate TCRalpha gene rearrangement, and (ii) regulate TCR signal intensity or duration in cells undergoing positive selection towards the CD4 lineage.


Distinct Roles for Bruton's Tyrosine Kinase in B Cell Immune Synapse Formation.

  • Sara Roman-Garcia‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Bruton's tyrosine kinase (Btk) has a key role in the signaling pathways of receptors essential for the B lymphocyte response. Given its implication in B cell-related immunodeficiencies, leukemias/lymphomas and autoimmunity, Btk is studied intensely and is a target for therapy. Here, using primary B cells from distinct mouse models and the pharmacological inhibitors ibrutinib and acalabrutinib, we report distinct roles for Btk in antigen-triggered immune synapse (IS) formation. Btk recruitment to the plasma membrane regulates the B cell ability to trigger IS formation as well as its appropriate molecular assembly; Btk shuttling/scaffold activities seem more relevant than the kinase function on that. Btk-kinase activity controls antigen accumulation at the IS through the PLCγ2/Ca2+ axis. Impaired Btk membrane-recruitment or kinase function likewise alters antigen-triggered microtubule-organizing center (MTOC) polarization to the IS, B cell activation and proliferation. Data also show that, for B cell function, IS architecture is as important as the quantity of antigen that accumulates at the synapse.


Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model.

  • Sai Ping Lau‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Pancreatic ductal adenocarcinoma (PDAC) is notoriously resistant to treatment including checkpoint-blockade immunotherapy. We hypothesized that a bimodal treatment approach consisting of dendritic cell (DC) vaccination to prime tumor-specific T cells, and a strategy to reprogram the desmoplastic tumor microenvironment (TME) would be needed to break tolerance to these pancreatic cancers. As a proof-of-concept, we investigated the efficacy of combined DC vaccination with CD40-agonistic antibodies in a poorly immunogenic murine model of PDAC. Based on the rationale that mesothelioma and pancreatic cancer share a number of tumor associated antigens, the DCs were loaded with either pancreatic or mesothelioma tumor lysates.


Immunomodulatory Effects of Stereotactic Body Radiotherapy and Vaccination with Heat-Killed Mycobacterium Obuense (IMM-101) in Patients with Locally Advanced Pancreatic Cancer.

  • Freek R van 't Land‎ et al.
  • Cancers‎
  • 2022‎

Patients with locally advanced pancreatic cancer (LAPC) are treated with chemotherapy. In selected cases, stereotactic body radiotherapy (SBRT) can be added to the regimen. We hypothesized that adding an adjuvant containing a heat-killed mycobacterium (IMM-101) to SBRT may lead to beneficial immuno-modulatory effects, thereby improving survival. This study aims to investigate the safety of adding IMM-101 to SBRT and to investigate the immuno-modulatory effects of the combination treatment in the peripheral blood of LAPC patients.


Bruton's tyrosine kinase inhibition induces rewiring of proximal and distal B-cell receptor signaling in mice.

  • Jasper Rip‎ et al.
  • European journal of immunology‎
  • 2021‎

Bruton's tyrosine kinase (Btk) is a crucial signaling molecule in BCR signaling and a key regulator of B- cell differentiation and function. Btk inhibition has shown impressive clinical efficacy in various B-cell malignancies. However, it remains unknown whether inhibition additionally induces changes in BCR signaling due to feedback mechanisms, a phenomenon referred to as BCR rewiring. In this report, we studied the impact of Btk activity on major components of the BCR signaling pathway in mice. As expected, NF-κB and Akt/S6 signaling was decreased in Btk-deficient B cells. Unexpectedly, phosphorylation of several proximal signaling molecules, including CD79a, Syk, and PI3K, as well as the key Btk-effector PLCγ2 and the more downstream kinase Erk, were significantly increased. This pattern of BCR rewiring was essentially opposite in B cells from transgenic mice overexpressing Btk. Importantly, prolonged Btk inhibitor treatment of WT mice or mice engrafted with leukemic B cells also resulted in increased phosho-CD79a and phospho-PLCγ2 in B cells. Our findings show that Btk enzymatic function determines phosphorylation of proximal and distal BCR signaling molecules in B cells. We conclude that Btk inhibitor treatment results in rewiring of BCR signaling, which may affect both malignant and healthy B cells.


Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration.

  • Bojana Lucic‎ et al.
  • Nature communications‎
  • 2019‎

HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4+ T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus. We further show that these gene clusters acquire their location during the activation of T cells. The clustering of these genes along with their transcriptional activity are the major determinants of HIV-1 integration in T cells. Our results provide evidence of the relevance of the spatial compartmentalization of the genome for HIV-1 integration, thus further strengthening the role of nuclear architecture in viral infection.


Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1.

  • Claudia Vivori‎ et al.
  • Genome biology‎
  • 2021‎

Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts.


Carm1-arginine methylation of the transcription factor C/EBPα regulates transdifferentiation velocity.

  • Guillem Torcal Garcia‎ et al.
  • eLife‎
  • 2023‎

Here, we describe how the speed of C/EBPα-induced B cell to macrophage transdifferentiation (BMT) can be regulated, using both mouse and human models. The identification of a mutant of C/EBPα (C/EBPαR35A) that greatly accelerates BMT helped to illuminate the mechanism. Thus, incoming C/EBPα binds to PU.1, an obligate partner expressed in B cells, leading to the release of PU.1 from B cell enhancers, chromatin closing and silencing of the B cell program. Released PU.1 redistributes to macrophage enhancers newly occupied by C/EBPα, causing chromatin opening and activation of macrophage genes. All these steps are accelerated by C/EBPαR35A, initiated by its increased affinity for PU.1. Wild-type C/EBPα is methylated by Carm1 at arginine 35 and the enzyme's perturbations modulate BMT velocity as predicted from the observations with the mutant. Increasing the proportion of unmethylated C/EBPα in granulocyte/macrophage progenitors by inhibiting Carm1 biases the cell's differentiation toward macrophages, suggesting that cell fate decision velocity and lineage directionality are closely linked processes.


The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus.

  • Claudia Ribeiro de Almeida‎ et al.
  • Immunity‎
  • 2011‎

Regulation of immunoglobulin (Ig) V(D)J gene rearrangement is dependent on higher-order chromatin organization. Here, we studied the in vivo function of the DNA-binding zinc-finger protein CTCF, which regulates interactions between enhancers and promoters. By conditional deletion of the Ctcf gene in the B cell lineage, we demonstrate that loss of CTCF allowed Ig heavy chain recombination, but pre-B cell proliferation and differentiation was severely impaired. In the absence of CTCF, the Igκ light chain locus showed increased proximal and reduced distal Vκ usage. This was associated with enhanced proximal Vκ and reduced Jκ germline transcription. Chromosome conformation capture experiments demonstrated that CTCF limits interactions of the Igκ enhancers with the proximal V(κ) gene region and prevents inappropriate interactions between these strong enhancers and elements outside the Igκ locus. Thus, although Ig gene recombination can occur in the absence of CTCF, it is a critical factor determining Vκ segment choice for recombination.


r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data.

  • Supat Thongjuea‎ et al.
  • Nucleic acids research‎
  • 2013‎

The coupling of chromosome conformation capture (3C) with next-generation sequencing technologies enables the high-throughput detection of long-range genomic interactions, via the generation of ligation products between DNA sequences, which are closely juxtaposed in vivo. These interactions involve promoter regions, enhancers and other regulatory and structural elements of chromosomes and can reveal key details of the regulation of gene expression. 3C-seq is a variant of the method for the detection of interactions between one chosen genomic element (viewpoint) and the rest of the genome. We present r3Cseq, an R/Bioconductor package designed to perform 3C-seq data analysis in a number of different experimental designs. The package reads a common aligned read input format, provides data normalization, allows the visualization of candidate interaction regions and detects statistically significant chromatin interactions, thus greatly facilitating hypothesis generation and the interpretation of experimental results. We further demonstrate its use on a series of real-world applications.


Self-assembly of human latexin into amyloid-like oligomers.

  • Irantzu Pallarés‎ et al.
  • BMC structural biology‎
  • 2007‎

In conformational disorders, it is not evident which amyloid aggregates affect specific molecular mechanisms or cellular pathways, which cause disease because of their quantity and mechanical features and which states in aggregate formation are pathogenic. Due to the increasing consensus that prefibrillar oligomers play a major role in conformational diseases, there is a growing interest in understanding the characteristics of metastable polypeptide associations.


Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming.

  • Mirko Francesconi‎ et al.
  • eLife‎
  • 2019‎

Forced transcription factor expression can transdifferentiate somatic cells into other specialised cell types or reprogram them into induced pluripotent stem cells (iPSCs) with variable efficiency. To better understand the heterogeneity of these processes, we used single-cell RNA sequencing to follow the transdifferentation of murine pre-B cells into macrophages as well as their reprogramming into iPSCs. Even in these highly efficient systems, there was substantial variation in the speed and path of fate conversion. We predicted and validated that these differences are inversely coupled and arise in the starting cell population, with Mychigh large pre-BII cells transdifferentiating slowly but reprogramming efficiently and Myclow small pre-BII cells transdifferentiating rapidly but failing to reprogram. Strikingly, differences in Myc activity predict the efficiency of reprogramming across a wide range of somatic cell types. These results illustrate how single cell expression and computational analyses can identify the origins of heterogeneity in cell fate conversion processes.


Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation.

  • Ai Ing Lim‎ et al.
  • Cell‎
  • 2017‎

Innate lymphoid cells (ILCs) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCPs). How ILCPs give rise to mature tissue-resident ILCs remains unclear. Here, we identify circulating and tissue ILCPs in humans that fail to express the transcription factors and cytokine outputs of mature ILCs but have these signature loci in an epigenetically poised configuration. Human ILCPs robustly generate all ILC subsets in vitro and in vivo. While human ILCPs express low levels of retinoic acid receptor (RAR)-related orphan receptor C (RORC) transcripts, these cells are found in RORC-deficient patients and retain potential for EOMES+ natural killer (NK) cells, interferon gamma-positive (IFN-γ+) ILC1s, interleukin (IL)-13+ ILC2s, and for IL-22+, but not for IL-17A+ ILC3s. Our results support a model of tissue ILC differentiation ("ILC-poiesis"), whereby diverse ILC subsets are generated in situ from systemically distributed ILCPs in response to local environmental signals.


Aberrant characteristics of peripheral blood innate lymphoid cells in COPD, independent of smoking history.

  • Cathelijne M van Zelst‎ et al.
  • ERJ open research‎
  • 2024‎

Distinguishing asthma and COPD can pose challenges in clinical practice. Increased group 1 innate lymphoid cells (ILC1s) have been found in the lungs and peripheral blood of COPD patients, while asthma is associated with elevated levels of ILC2s. However, it is unclear whether the inflammatory characteristics of ILC1s and ILC2s differ between COPD and asthma. This study aims to compare peripheral blood ILC subsets and their expression of inflammatory markers in COPD patients, asthma patients and controls.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: