Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 96 papers

MEOX1 Promotes Tumor Progression and Predicts Poor Prognosis in Human Non-Small-Cell Lung Cancer.

  • Lichao Sun‎ et al.
  • International journal of medical sciences‎
  • 2019‎

Background: MEOX1 is a homeobox transcriptional factor, and plays essential roles in regulating somite development. Our previous study indicated that MEOX1 is a critical molecular target in mesenchymal-like cancer cells in PTEN-deficient Trastuzumab resistant breast cancer. Despite the potential implication of MEOX1 for the cancer progression, no previous studies examined its level and clinical significance in lung cancer tissues. In this study, we aimed to detect the MEOX1 expression and correlate its level with clinical outcome in non-small-cell lung cancer patients (NSCLC). Methods: MEOX1 gene expression in lung cancer was examined by using the Oncomine database. MEOX1 protein levels were evaluated by IHC using the corresponding primary antibody on two different commercial lung cancer tissue arrays. siRNA knockdown was used to elucidate the function of MEOX1. Results: Analysis of the Oncomine datasets identified that an elevation of MEOX1 in gene amplification in lung cancer tissues in comparison to normal lung tissues. Immunohistochemistical analysis demonstrated that MEOX1 was localized predominantly in the nucleus, and positive rate was 67.3% (111/165) in NSCLC samples. Statistical analysis revealed high levels of MEOX1 significantly correlated with Lymph Node Metastasis and Stage. Kaplan-Meier survival analysis showed that high levels of MEOX1 were significantly associated with unfavorable survival in NSCLC patients, and MEOX1 nucleus staining had worse survival, than did patients with overall expression in lung squamous cell carcinoma patients. Multivariate Cox's regression analysis found that MEOX1 was an independent poor prognostic predictor for patients with NSCLC. Silencing of MEOX1 by specific SiRNA significantly inhibited H460 and H1299 cell proliferation and sphere formation in serum-free medium. Conclusions: Our results firstly indentified that high levels of MEOX1 especially nuclear staining was an independent prognostic factor for NSCLC, and it served a essential roles in the regulation of cell proliferation and colony formation in vitro. It may represent a potential target for the NSCLC treatment.


Recent advances of bispecific antibodies in solid tumors.

  • Shengnan Yu‎ et al.
  • Journal of hematology & oncology‎
  • 2017‎

Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T), bispecific antibody (BsAb) is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides) and targets (e.g., tumor cells) but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs) and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER) family, carcinoembryonic antigen (CEA), and prostate-specific membrane antigen (PSMA) related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.


Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment.

  • Ming Yi‎ et al.
  • Molecular cancer‎
  • 2019‎

Immune checkpoint inhibitor (ICI) activates host's anti-tumor immune response by blocking negative regulatory immune signals. A series of clinical trials showed that ICI could effectively induce tumor regression in a subset of advanced cancer patients. In clinical practice, a main concerning for choosing ICI is the low response rate. Even though multiple predictive biomarkers such as PD-L1 expression, mismatch-repair deficiency, and status of tumor infiltrating lymphocytes have been adopted for patient selection, frequent resistance to ICI monotherapy has not been completely resolved. However, some recent studies indicated that ICI resistance could be alleviated by combination therapy with anti-angiogenesis treatment. Actually, anti-angiogenesis therapy not only prunes blood vessel which is essential to cancer growth and metastasis, but also reprograms the tumor immune microenvironment. Preclinical studies demonstrated that the efficacy of combination therapy of ICI and anti-angiogenesis was superior to monotherapy. In mice model, combination therapy could effectively increase the ratio of anti-tumor/pro-tumor immune cell and decrease the expression of multiple immune checkpoints more than PD-1. Based on exciting results from preclinical studies, many clinical trials were deployed to investigate the synergistic effect of the combination therapy and acquired promising outcome. This review summarized the latest understanding of ICI combined anti-angiogenesis therapy and highlighted the advances of relevant clinical trials.


Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management.

  • Zaoqu Liu‎ et al.
  • Journal of oncology‎
  • 2021‎

Hypoxia is a universal feature in the tumor microenvironment (TME). Nonetheless, the heterogeneous hypoxia patterns of TME have still not been elucidated in hepatocellular carcinoma (HCC). Using consensus clustering algorithm and public datasets, we identified heterogeneous hypoxia subtypes. We also revealed the specific biological and clinical characteristics via bioinformatic methods. The principal component analysis algorithm was employed to develop a hypoxia-associated risk score (HARS). We identified the two hypoxia subtypes: low hypoxia pattern (C1) and high hypoxia pattern (C2). C1 was less sensitive to immunotherapy compared to C2, consistent with the lack of immune cells and immune checkpoints (ICPs) in C1, whereas C2 was the opposite. C2 displayed worse prognosis and higher sensitivity to obatoclax relative to C1, while C1 was more sensitive to sorafenib. The two subtypes also demonstrated subtype-specific genomic variations including mutation, copy number alteration, and methylation. Moreover, we developed and validated a risk signature: HARS, which had excellent performance for predicting prognosis and immunotherapy. We revealed two hypoxia subtypes with distinct biological and clinical characteristics in HCC, which enhanced the understanding of hypoxia pattern. The risk signature was a promising biomarker for predicting prognosis and immunotherapy.


Novel miRNA Predicts Survival and Prognosis of Cholangiocarcinoma Based on RNA-seq Data and In Vitro Experiments.

  • Yuan Yao‎ et al.
  • BioMed research international‎
  • 2020‎

Accumulating evidence has demonstrated that microRNAs (miRNAs or miRs) play an important role in the diagnosis and prognosis of tumors. In the case of cholangiocarcinoma (CCA), miRNAs may serve as potential tumor biomarkers and therapeutic targets. Based on The Cancer Genome Atlas (TCGA) database, fold change >2 was used to screen out miRNAs with differential expression in patients with CCA. Univariate and multivariate Cox regression analyses identified miR-3913-5p as an independent prognostic factor in patients with CCA. Overall survival and progression-free survival of patients with CCA were analyzed based on clinical data from TCGA database. In addition, four datasets were combined to identify 21 possible target genes of miR-3913, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to predict potential pathways and functions of the molecular target genes. Subsequently, the miRNAs associated with survival were selected to build the miRNA-mRNA expression network. Furthermore, the differential expression of miR-3913-5p in CCA cells and normal bile duct epithelial cells was confirmed through in vitro experiments. The possible target genes (RNF24 and SIGLEC) were further screened by reverse transcription-quantitative PCR. In addition, functional experiments showed that miR-3913-5p might be an oncogene that affects the proliferation and migration of CCA cells by inhibiting and mimicking miR-3913-5p. Therefore, miR-3913 may serve as a biomarker for the diagnosis and prognosis of patients with CCA.


miR-221 Alleviates the Ox-LDL-Induced Macrophage Inflammatory Response via the Inhibition of DNMT3b-Mediated NCoR Promoter Methylation.

  • Jinshan Ye‎ et al.
  • Mediators of inflammation‎
  • 2019‎

Atherosclerosis (AS) is a chronic inflammatory disease, and macrophages play a key role in all phases of AS. Recent studies have shown that miR-221 is a biomarker for AS and stroke; however, the role and mechanism of miR-221 in AS are unclear. Herein, we found that miR-221 and NCoR levels were decreased in ox-LDL-treated THP-1-derived macrophages. In contrast, DNMT3b, IL-6, and TNF-α expression levels were increased under these conditions. Upregulation of miR-221 or NCoR could partially inhibit ox-LDL-induced IL-6 and TNF-α expression. Further studies showed that DNMT3b was a target of miR-221. DNMT3b inhibition also suppressed IL-6 and TNF-α expression and increased NCoR expression in the presence of ox-LDL. Moreover, DNMT3b was involved in ox-LDL-induced DNA methylation in the promoter region of NCoR. These findings suggest that miR-221 suppresses ox-LDL-induced inflammatory responses via suppressing DNMT3b-mediated DNA methylation in the promoter region of NCoR. These results provide a rationale for using intracellular miR-211 as a possible antiatherosclerotic target.


A technique to reduce skin toxicity in radiotherapy treatment planning for esophageal cancer.

  • Wanfu Yang‎ et al.
  • Journal of applied clinical medical physics‎
  • 2020‎

To demonstrate a specific skin dose limiting technique in radiotherapy treatment planning for esophageal cancer and carry out a comparative analysis combining with clinical cases.


New Insights Into the Pathogenesis of Alzheimer's Disease.

  • Liyuan Fan‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Alzheimer's disease (AD), a common neurodegenerative disease in the elderly and the most prevalent cause of dementia, is characterized by progressive cognitive impairment. The prevalence of AD continues to increase worldwide, becoming a great healthcare challenge of the twenty-first century. In the more than 110 years since AD was discovered, many related pathogenic mechanisms have been proposed, and the most recognized hypotheses are the amyloid and tau hypotheses. However, almost all clinical trials targeting these mechanisms have not identified any effective methods to treat AD. Scientists are gradually moving away from the simple assumption, as proposed in the original amyloid hypothesis, to new theories of pathogenesis, including gamma oscillations, prion transmission, cerebral vasoconstriction, growth hormone secretagogue receptor 1α (GHSR1α)-mediated mechanism, and infection. To place these findings in context, we first reviewed the neuropathology of AD and further discussed new insights in the pathogenesis of AD.


La3 B6 O13 (OH): The First Acentric High-Pressure Borate Displaying Edge-Sharing BO4 Tetrahedra.

  • Birgit Fuchs‎ et al.
  • Chemistry (Weinheim an der Bergstrasse, Germany)‎
  • 2020‎

La3 B6 O13 (OH) was obtained by a high-pressure/high-temperature experiment at 6 GPa and 1673 K. The compound crystallizes in the space group P21 (no. 4) with the lattice parameters a=4.785(2), b=12.880(4), c=7.433(3) Å, and β=90.36(10)°, and is built up of corner- as well as edge-sharing BO4 tetrahedra. It represents the first acentric high-pressure borate containing these B2 O6 entities. The compound develops borate layers of "sechser"-rings with the La3+ cations positioned between the layers. Single-crystal and powder X-ray diffraction, vibrational and MAS NMR spectroscopy, second-harmonic generation (SHG) and thermoanalytical measurements, as well as computational methods were used to affirm the proposed structure and the B2 O6 entities.


Transcriptome Analysis on Maternal Separation Rats With Depression-Related Manifestations Ameliorated by Electroacupuncture.

  • Yuanjia Zheng‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Maternal separation (MS), a stressful event in early life, has been linked to neuropsychiatric disorders later in life, especially depression. In this study we investigated whether treatment with electroacupuncture (EA) could ameliorate depression-related manifestations in adult animals that had adverse early life experiences. We demonstrated depression-like behavior deficiencies in a sucrose preference test and a forced swimming test in a rat model with neonatal MS. Repeated EA treatment at the acupoints Baihui (GV20) and Yintang (GV29) during adulthood was shown to be remarkably attenuated above behavioral deficits. Using unbiased genome-wide RNA sequencing to investigate alterations in the transcriptome of the prefrontal cortex (PFC), we explored the altered gene sets involved in circadian rhythm and neurotransmitter transporter activity in MS rats, and their expression tended to be reversed after EA treatment. In addition, we analyzed the interaction network of differentiated lncRNA- or circRNA-miRNA-mRNA by using the principle of competitive endogenous RNA (ceRNA). These results suggest that EA at GV20 and GV29 ameliorates depression-related manifestations by regulating the expression of multiple genes.


Fibrinogen-Like Protein 2 (FGL2) is a Novel Biomarker for Clinical Prediction of Human Breast Cancer.

  • Yanyan Feng‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Fibrinogen-like protein 2 (FGL2) is a member of the fibrinogen-like protein family and possesses important regulatory functions in both innate and adaptive immune responses. FGL2 is overexpressed in glioma, and its expression level is negatively associated with the prognosis of glioma patients. However, the diagnostic value of FGL2 is unknown in breast carcinoma. MATERIAL AND METHODS We comprehensively analyzed the expression pattern of FGL2 in breast cancer. Several online databases - TCGA, Oncomine, GEPIA, Kaplan-Meier plotter, and PrognoScan - were used in this study. RESULTS Based on the TCGA dataset and Oncomine database, we found that the expression level of FGL2 was remarkably lower in breast cancer compared with adjacent normal tissues. Clinical data showed that the expression level of FGL2 was significantly associated with radiation therapy, PR status, and tumor stage. Bioinformatics analysis of the GEPIA, Kaplan-Meier plotter, and PrognoScan databases showed that lower FGL2 expression levels were associated with a worse prognosis in breast cancer patients. Furthermore, the expression level of FGL2 was positively correlated with the immune cell infiltrations in breast cancer, especially those cells with high antitumor activities. GO, KEGG, and GSEA analyses also validated that FGL2 was closely related to genes involved in the immune response, signal transduction, and T cell receptor signaling pathway in breast cancer. CONCLUSIONS The results demonstrated that high expression of FGL2 is a useful marker for breast cancer treatment and appears to be correlated with enhanced antitumor activities in breast cancer patients.


TTN/OBSCN 'Double-Hit' predicts favourable prognosis, 'immune-hot' subtype and potentially better immunotherapeutic efficacy in colorectal cancer.

  • Zaoqu Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. Although treatment strategies for solid tumours have been revolutionized by immunotherapy, only a small subset of CRC patients benefit. Using two-independent cohorts, we found the common frequently mutated genes TTN and OBSCN had the significant correlation with higher tumour mutation burden (TMB) and favourable overall survival. TTN and OBSCN also displayed significant commutation phenomenon. Therefore, based on the status of TTN and OBSCN, we stratified patients into 'Double-WT' phenotype, 'Single-Hit' phenotype and 'Double-Hit' phenotype. Importantly, the 'Double-Hit' phenotype had favourable prognosis, low malignant events propensity, and highest TMB, immune cells infiltration abundance, POLE mutation rate, microsatellite instability ratio, as well as immune checkpoints expression compared with the other two phenotypes. These results indicated that the 'Double-Hit' phenotype suggested 'immune-hot' tumours and potentially better immunotherapeutic efficacy. Bioinformatic algorithm assessment of immunotherapy responses also confirmed this conclusion, and the 'Double-Hit' phenotype was found to be a better predictor of immunotherapy than PD-L1, PD-1, CTLA-4, TMB and microsatellite status. This study revealed CRC patients with TTN/OBSCN 'Double-Hit' was significantly associated favourable prognosis, 'immune-hot' subtype and potentially better immunotherapeutic efficacy.


125I seeds inhibit proliferation and promote apoptosis in cholangiocarcinoma cells by regulating the AGR2-mediated p38 MAPK pathway.

  • Xueliang Zhou‎ et al.
  • Cancer letters‎
  • 2022‎

125I seeds can effectively inhibit the growth of a variety of cancer cells. It has been used in the treatment of a variety of cancers, and has achieved certain curative effect. However, to the best of our knowledge, no report has described the effects of 125I seeds on the biological functions of cholangiocarcinoma (CCA) and the mechanisms underlying the effects of the seeds on this cancer. In this study, we demonstrated that 125I seeds could inhibit the proliferation, migration and invasion of CCA cells, as well as promoting apoptosis and blocking the cell cycle in these cells. Moreover, 125I seeds inhibited the growth of CCA xenografts and promoted the apoptosis of CCA cells in vivo. Furthermore, transcriptome sequencing showed that 125I seeds could inhibit the growth of CCA by inhibiting the expression of AGR2 and regulating p38 MAPK pathway. Finally, this finding indicated that 125I seeds can inhibit proliferation and promote apoptosis in CCA cells by inhibiting the expression of AGR2 and DUSP1 and increasing the expression of p-p38 MAPK and p-p53. This study provides a new research direction for studies investigating the mechanisms underlying the effects of 125I seeds on CCA.


CELF2 is a candidate prognostic and immunotherapy biomarker in triple-negative breast cancer and lung squamous cell carcinoma: A pan-cancer analysis.

  • Libo Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

CUGBP Elav-like family member 2(CELF2) plays crucial roles in the development and activation of T cell. However, the impacts of CELF2 on tumour-infiltrating immune cells (TIICs) and clinical outcomes of tumours remain unclear. In this study, we found that elevated CELF2 expression was markedly correlated with prolonged survival in multiple tumours, particularly in breast and lung cancers. Notably, CELF2 only impacted the prognosis of triple-negative breast cancer (TNBC) with lymph node metastasis. Further investigation showed CELF2 expression was positively correlated with the infiltration abundance of dendritic cells (DCs), CD8+ T cells and neutrophils in breast invasive carcinoma (BRCA) and DCs in lung squamous cell carcinoma (LUSC). CELF2 also had strong correlations with markers of diverse TIICs such as T cells, tumour-associated macrophages and DCs in BRCA and LUSC. Importantly, CELF2 was significantly associated with plenty of immune checkpoint molecules (ICMs) and outperformed five prevalent biomarkers including PD-1, PD-L1, CTLA-4, CD8 and tumour mutation burden in predicting immunotherapeutic responses. Immunohistochemistry also revealed lower protein levels of CELF2 in TNBC and LUSC compared to normal tissues, and patients with high expression showed significantly prolonged prognosis. In conclusion, we demonstrated that increased CELF2 expression was closely related to better prognosis and superior TIIC infiltration and ICM expression, particularly in BRCA and LUSC. CELF2 also performed well in evaluating the immunotherapeutic efficacy, suggesting CELF2 might be a promising biomarker.


Peritumoral abnormalities on dynamic-enhanced CT after brachytherapy for hepatic malignancies: local progression or benign changes?

  • Guanyu Chen‎ et al.
  • European radiology‎
  • 2022‎

To determine if dynamic CT can differentiate local progression from radioactive seed-induced peritumoral reaction (RSIPR) after brachytherapy with iodine-125 radioactive seeds (BIRS) for advanced hepatic malignancies.


SCG2: A Prognostic Marker That Pinpoints Chemotherapy and Immunotherapy in Colorectal Cancer.

  • Siyuan Weng‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Fluorouracil (FU)-based chemotherapy regimens are indispensable in the comprehensive treatment of colorectal cancer (CRC). However, the heterogeneity of treated individuals and the severe adverse effects of chemotherapy results in limited overall benefit.


Genetic analysis of periventricular nodular heterotopia 7 caused by a novel NEDD4L missense mutation: Case and literature summary.

  • Juan Liu‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

Neurodevelopmental disorders associated with periventricular nodular heterotopia (PVNH) are characterized by phenotypic and genetic heterogeneity. NEDD4L mutation can lead to PVNH7. However, at present, only eight NEDD4L pathogenic variants have been identified across 15 cases of PVNH7 worldwide. Given this dearth of evidence, the precise correlations between genetic pathogenesis and phenotypes remain to be determined.


Associations Between Life's Essential 8 and Chronic Kidney Disease.

  • Yuqing Ren‎ et al.
  • Journal of the American Heart Association‎
  • 2023‎

Chronic kidney disease (CKD) is closely associated with cardiovascular disease. We aimed to examine the association of Life's Essential 8 (LE8), the recently updated measurement of cardiovascular health, with the prevalence of CKD among US adults.


Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus.

  • Stephanie K Dougan‎ et al.
  • Nature‎
  • 2013‎

Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.


Amino acid-linked platinum(II) compounds: non-canonical nucleoside preferences and influence on glycosidic bond stabilities.

  • Bett Kimutai‎ et al.
  • Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry‎
  • 2019‎

Nucleobases serve as ideal targets where drugs bind and exert their anticancer activities. Cisplatin (cisPt) preferentially coordinates to 2'-deoxyguanosine (dGuo) residues within DNA. The dGuo adducts that are formed alter the DNA structure, contributing to inhibition of function and ultimately cancer cell death. Despite its success as an anticancer drug, cisPt has a number of drawbacks that reduce its efficacy, including repair of adducts and drug resistance. Some approaches to overcome this problem involve development of compounds that coordinate to other purine nucleobases, including those found in RNA. In this work, amino acid-linked platinum(II) (AAPt) compounds of alanine and ornithine (AlaPt and OrnPt, respectively) were studied. Their reactivity preferences for DNA and RNA purine nucleosides (i.e., 2'-deoxyadenosine (dAdo), adenosine (Ado), dGuo, and guanosine (Guo)) were determined. The chosen compounds form predominantly monofunctional adducts by reacting at the N1, N3, or N7 positions of purine nucleobases. In addition, features of AAPt compounds that impact the glycosidic bond stability of Ado residues were explored. The glycosidic bond cleavage is activated differentially for AlaPt-Ado and OrnPt-Ado isomers. Formation of unique adducts at non-canonical residues and subsequent destabilization of the glycosidic bonds are important features that could circumvent platinum-based drug resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: