Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Altered expression of norepinephrine transporter and norepinephrine in human placenta cause pre-eclampsia through regulated trophoblast invasion.

  • Kyu-Hwan Na‎ et al.
  • Clinical and experimental reproductive medicine‎
  • 2013‎

We investigated the norepinephrine transporter (NET) expression in normal and pre-eclamptic placentas and analyzed the invasion activity of trophoblastic cells based on norepinephrine (NE)-NET regulation.


Correlation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer's disease.

  • Minho Moon‎ et al.
  • Journal of neurochemistry‎
  • 2015‎

The functional roles of the orphan nuclear receptor, Nurr1, have been extensively studied and well established in the development and survival of midbrain dopamine neurons. As Nurr1 and other NR4A members are widely expressed in the brain in overlapping and distinct manners, it has been an open question whether Nurr1 has important function(s) in other brain areas. Recent studies suggest that up-regulation of Nurr1 expression is critical for cognitive functions and/or long-term memory in forebrain areas including hippocampal formation. Questions remain about the association between Nurr1 expression and Alzheimer's disease (AD) brain pathology. Here, using our newly developed Nurr1-selective antibody, we report that Nurr1 protein is prominently expressed in brain areas with Aβ accumulation, that is, the subiculum and the frontal cortex, in the 5XFAD mouse and that Nurr1 is highly co-expressed with Aβ at early stages. Furthermore, the number of Nurr1-expressing cells significantly declines in the 5XFAD mouse in an age-dependent manner, accompanied by increased plaque deposition. Thus, our findings suggest that altered expression of Nurr1 is associated with AD progression. Using our newly developed Nurr1-selective antibody, we show that Nurr1 protein is prominently expressed in brain areas accumulating amyloid-beta (Aβ) in the transgenic mouse model of Alzheimer's disease (AD) and that Nurr1 is highly co-expressed with Aβ at early stages (upper panel). Furthermore, in the AD brain the number of Nurr1-expressing cells significantly declines in an age-dependent manner concomitant with increased Aβ accumulation (lower diagram) highlighting a possible Nurr1 involvement in AD pathology.


Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases.

  • Tae-Yoon Park‎ et al.
  • Scientific reports‎
  • 2019‎

For over a half-century the anti-malarial drug chloroquine (CQ) has been used as a therapeutic agent, alone or in combination, to treat autoimmune diseases. However, neither the underlying mechanism(s) of action nor their molecular target(s) are well defined. The orphan nuclear receptor Nurr1 (also known as NR4A2) is an essential transcription factor affecting the development and maintenance of midbrain dopaminergic neurons. In this study, using in vitro T cell differentiation models, we demonstrate that CQ activates TREG cell differentiation and induces Foxp3 gene expression in a Nurr1-dependent manner. Remarkably, CQ appears to induce Nurr1 function by two distinct mechanisms: firstly, by direct binding to Nurr1's ligand-binding domain and promoting its transcriptional activity and secondly by upregulation of Nurr1 expression through the CREB signaling pathway. In contrast, CQ suppressed gene expression and differentiation of pathogenic TH17 cells. Importantly, using a valid animal model of inflammatory bowel disease (IBD), we demonstrated that CQ promotes Foxp3 expression and differentiation of TREG cells in a Nurr1-dependent manner, leading to significant improvement of IBD-related symptoms. Taken together, these data suggest that CQ ameliorates autoimmune diseases via regulating Nurr1 function/expression and that Nurr1 is a promising target for developing effective therapeutics of human inflammatory autoimmune diseases.


Potential Therapeutic Effect of Micrornas in Extracellular Vesicles from Mesenchymal Stem Cells against SARS-CoV-2.

  • Jae Hyun Park‎ et al.
  • Cells‎
  • 2021‎

Extracellular vesicles (EVs) are cell-released, nanometer-scaled, membrane-bound materials and contain diverse contents including proteins, small peptides, and nucleic acids. Once released, EVs can alter the microenvironment and regulate a myriad of cellular physiology components, including cell-cell communication, proliferation, differentiation, and immune responses against viral infection. Among the cargoes in the vesicles, small non-coding micro-RNAs (miRNAs) have received attention in that they can regulate the expression of a variety of human genes as well as external viral genes via binding to the complementary mRNAs. In this study, we tested the potential of EVs as therapeutic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. First, we found that the mesenchymal stem-cell-derived EVs (MSC-EVs) enabled the rescue of the cytopathic effect of SARS-CoV-2 virus and the suppression of proinflammatory responses in the infected cells by inhibiting the viral replication. We found that these anti-viral responses were mediated by 17 miRNAs matching the rarely mutated, conserved 3'-untranslated regions (UTR) of the viral genome. The top five miRNAs highly expressed in the MSC-EVs, miR-92a-3p, miR-26a-5p, miR-23a-3p, miR-103a-3p, and miR-181a-5p, were tested. They were bound to the complemented sequence which led to the recovery of the cytopathic effects. These findings suggest that the MSC-EVs are a potential candidate for multiple variants of anti-SARS-CoV-2.


Primary astrocytic mitochondrial transplantation ameliorates ischemic stroke.

  • Eun-Hye Lee‎ et al.
  • BMB reports‎
  • 2023‎

Mitochondria are important organelles that regulate adenosine triphosphate production, intracellular calcium buffering, cell survival, and apoptosis. They play therapeutic roles in injured cells via transcellular transfer through extracellular vesicles, gap junctions, and tunneling nanotubes. Astrocytes can secrete numerous factors known to promote neuronal survival, synaptic formation, and plasticity. Recent studies have demonstrated that astrocytes can transfer mitochondria to damaged neurons to enhance their viability and recovery. In this study, we observed that treatment with mitochondria isolated from rat primary astrocytes enhanced cell viability and ameliorated hydrogen peroxide-damaged neurons. Interestingly, isolated astrocytic mitochondria increased the number of cells under damaged neuronal conditions, but not under normal conditions, although the mitochondrial transfer efficiency did not differ between the two conditions. This effect was also observed after transplanting astrocytic mitochondria in a rat middle cerebral artery occlusion model. These findings suggest that mitochondria transfer therapy can be used to treat acute ischemic stroke and other diseases. [BMB Reports 2023; 56(2): 90-95].


Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells.

  • Mi-Yoon Chang‎ et al.
  • PloS one‎
  • 2010‎

Given the usefulness of rats as an experimental system, an efficient method for generating rat induced pluripotent stem (iPS) cells would provide researchers with a powerful tool for studying human physiology and disease. Here, we report direct reprogramming of rat neural precursor (NP) cells and rat embryonic fibroblasts (REF) into iPS cells by retroviral transduction using either three (Oct3/4, Sox2, and Klf4), four (Oct3/4, Sox2, Klf4, and c-Myc), or five (Oct3/4, Sox2, Klf4, c-Myc, and Nanog) genes.


The RAB39B p.G192R mutation causes X-linked dominant Parkinson's disease.

  • Ignacio F Mata‎ et al.
  • Molecular neurodegeneration‎
  • 2015‎

To identify the causal gene in a multi-incident U.S. kindred with Parkinson's disease (PD).


Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway.

  • Shin-Hye Yu‎ et al.
  • BMB reports‎
  • 2022‎

Inflammation is one of the body's natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response. Therefore, treating inflammatory diseases by recovering mitochondrial function may be a potential therapeutic approach. Recently, mitochondrial transplantation has been proven to be beneficial in hyperinflammatory animal models. However, it is unclear how mitochondrial transplantation attenuates inflammatory responses induced by external stimuli. Here, we isolated mitochondria from umbilical cord-derived mesenchymal stem cells, referred as to PN-101. We found that PN-101 could significantly reduce LPS-induced mortality in mice. In addition, in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages, PN-101 attenuated LPS-induced increase production of pro-inflammatory cytokines. Furthermore, the anti-inflammatory effect of PN-101 was mediated by blockade of phosphorylation, nuclear translocation, and trans-activity of NFκB. Taken together, our results demonstrate that PN-101 has therapeutic potential to attenuate pathological inflammatory responses. [BMB Reports 2022; 55(3): 136-141].


Lmx1a regulates dopamine transporter gene expression during ES cell differentiation and mouse embryonic development.

  • Sangmi Chung‎ et al.
  • Journal of neurochemistry‎
  • 2012‎

Midbrain dopaminergic neurons are implicated in various neurological and psychiatric diseases as well as drug addiction. Thus, the study of their generation and maintenance is pivotal to further our understanding of these disease-underlying mechanisms and development of novel therapeutics. Here, using an embryonic stem cell in vitro differentiation system and mutant dreher mouse, we showed that Lmx1a, an early regulator of midbrain dopamine neural progenitor phenotype specification, is also involved in the regulation of midbrain dopaminergic maturation by regulating gene expression of the dopamine transporter. Forced expression of Lmx1a induced dopamine transporter expression precociously in immature dopaminergic neurons, accompanied by significant increase in specific dopamine uptake. Lmx1a binds to well-conserved sequences in the dopamine transporter promoter region, and this binding sequence directs Lmx1a-dependent activation of reporter gene expression. Furthermore, during mouse embryonic development, dopamine transporter was more severely affected by Lmx1a mutation compared to other dopamine markers such as tyrosine hydroxylase and dopa decarboxylase, again supporting the role of Lmx1a in midbrain dopaminergic maturation in vivo. Thus, this study demonstrates that dopamine transporter is a direct target of Lmx1a and emphasizes a novel role of Lmx1a as one of regulators of mature midbrain dopaminergic neurotransmitter phenotypes.


Noggin Over-Expressing Mouse Embryonic Fibroblasts and MS5 Stromal Cells Enhance Directed Differentiation of Dopaminergic Neurons from Human Embryonic Stem Cells.

  • Mi-Sun Lim‎ et al.
  • PloS one‎
  • 2015‎

Directed methods for differentiating human embryonic stem cells (hESCs) into dopaminergic (DA) precursor cells using stromal cells co-culture systems are already well established. However, not all of the hESCs differentiate into DA precursors using these methods. HSF6, H1, H7, and H9 cells differentiate well into DA precursors, but CHA13 and CHA15 cells hardly differentiate. To overcome this problem, we modified the differentiation system to include a co-culturing step that exposes the cells to noggin early in the differentiation process. This was done using γ-irradiated noggin-overexpressing CF1-mouse embryonic fibroblasts (MEF-noggin) and MS5 stromal cells (MS5-noggin and MS5-sonic hedgehog). After directed differentiation, RT-PCR analyses revealed that engrailed-1 (En-1), Lmx1b, and Nurr1, which are midbrain DA markers, were expressed regardless of differentiation stage. Moreover, tyrosine hydroxylase (Th) and an A9 midbrain-specific DA marker (Girk2) were expressed during differentiation, whereas levels of Oct3/4, an undifferentiated marker, decreased. Immunocytochemical analyses revealed that protein levels of the neuronal markers TH and TuJ1 increased during the final differentiation stage. These results demonstrate that early noggin exposure may play a specific role in the directed differentiation of DA cells from human embryonic stem cells.


Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells.

  • Jung-Il Moon‎ et al.
  • BMB reports‎
  • 2019‎

Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols [BMB Reports 2019; 52(5): 324-329].


Dopamine neuron induction and the neuroprotective effects of thyroid hormone derivatives.

  • Eun-Hye Lee‎ et al.
  • Scientific reports‎
  • 2019‎

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive movement disturbances caused by the selective loss of dopamine (DA) neurons in the substantia nigra. Despite the identification of the causal mechanisms underlying the pathogenesis of PD, effective treatments remain elusive. In this study, we observed that a low level of fetal bovine serum (FBS) effectively induced DA neurons in rat neural precursor cells (NPCs) by enhancing nuclear receptor-related 1 protein (NURR1) expression. Among the various components of FBS, the thyroid hormones triiodothyronine (T3) and thyroxine (T4) were identified as key factors for the induction of DA neurons. Since an overdose of thyroid hormones can cause hyperthyroidism, we synthesized several thyroid hormone derivatives that can partially activate thyroid hormone receptors and induce the complete differentiation of NPCs into DA neurons. Two derivatives (#3 and #9) showed positive effects on the induction and maturation of DA neurons without showing significant affinity for the thyroid hormone receptor. They also effectively protected and restored DA neurons from neurotoxic insults. Taken together, these observations demonstrate that thyroid hormone derivatives can strongly induce DA neuron differentiation while avoiding excessive thyroid stimulation and might therefore be useful candidates for PD treatment.


Preferred Migration of Mitochondria toward Cells and Tissues with Mitochondrial Damage.

  • Seo-Eun Lee‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: