Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 88 papers

ELK3-GATA3 axis modulates MDA-MB-231 metastasis by regulating cell-cell adhesion-related genes.

  • Kwang-Soo Kim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

GATA3 is a master regulator that drives mammary epithelial cell differentiation, and the suppression of GATA3 expression is associated with the development of aggressive breast cancer. However, the mechanism through which GATA3 loss drives cancer development is poorly understood. Previously, we reported that ELK3 suppression in MDA-MB-231 (ELK3 KD) resulted in the reprogramming of these cells from a basal to luminal subtype, which was associated with the induction of GATA3 expression, and that the ELK3-GATA3 axis orchestrated the metastatic characteristics of MDA-MB-231. Here, we show that GATA3 suppression in ELK3 knockdown MDA-MB-231 cells (ELK3/GATA3 DKD) restores the metastatic ability comparably to that of control MDA-MB-231 cells, even though the epithelial cell morphology and TGF-β signaling of ELK3 KD are not recovered in ELK3/GATA3 DKD. The expression of E-cadherin and tight junctional proteins, including occludin, claudin and ZO-1, which is activated in ELK3 KD, is suppressed in ELK3/GATA3 DKD. These results reveal the possibility that the ELK3-GATA3 axis determines the metastatic characteristics of MDA-MB-231 by regulating the expression of cell-cell adhesion factors.


Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations.

  • Hongyu Li‎ et al.
  • Autophagy‎
  • 2019‎

Heterozygous mutations in GBA, the gene encoding the lysosomal enzyme glucosylceramidase beta/β-glucocerebrosidase, comprise the most common genetic risk factor for Parkinson disease (PD), but the mechanisms underlying this association remain unclear. Here, we show that in GbaL444P/WT knockin mice, the L444P heterozygous Gba mutation triggers mitochondrial dysfunction by inhibiting autophagy and mitochondrial priming, two steps critical for the selective removal of dysfunctional mitochondria by autophagy, a process known as mitophagy. In SHSY-5Y neuroblastoma cells, the overexpression of L444P GBA impeded mitochondrial priming and autophagy induction when endogenous lysosomal GBA activity remained intact. By contrast, genetic depletion of GBA inhibited lysosomal clearance of autophagic cargo. The link between heterozygous GBA mutations and impaired mitophagy was corroborated in postmortem brain tissue from PD patients carrying heterozygous GBA mutations, where we found increased mitochondrial content, mitochondria oxidative stress and impaired autophagy. Our findings thus suggest a mechanistic basis for mitochondrial dysfunction associated with GBA heterozygous mutations. Abbreviations: AMBRA1: autophagy/beclin 1 regulator 1; BECN1: beclin 1, autophagy related; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chloroyphenylhydrazone; CYCS: cytochrome c, somatic; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; GBA: glucosylceramidase beta; GBA-PD: Parkinson disease with heterozygous GBA mutations; GD: Gaucher disease; GFP: green fluorescent protein; LC3B: microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated form of microtubule-associated protein 1 light chain 3 beta; MitoGreen: MitoTracker Green; MitoRed: MitoTracker Red; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH transcription factor; NBR1: NBR1, autophagy cargo receptor; Non-GBA-PD: Parkinson disease without GBA mutations; PD: Parkinson disease; PINK1: PTEN induced putative kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; ROS: reactive oxygen species; SNCA: synuclein alpha; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; VDAC1/Porin: voltage dependent anion channel 1; WT: wild type.


Cutting edge: IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with lipopolysaccharide.

  • Brad E Morrison‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2012‎

Inflammation and its mediators, including cytokines and reactive oxygen species, are thought to contribute to neurodegeneration. In the mouse brain, we found that IL-13Rα1 was expressed in the dopaminergic (DA) neurons of the substantia nigra pars compacta, which are preferentially lost in human Parkinson's disease. Mice deficient for Il13ra1 exhibited resistance to loss of DA neurons in a model of chronic peripheral inflammation using bacterial LPS. IL-13, as well as IL-4, potentiated the cytotoxic effects of t-butyl hydroperoxide and hydrogen peroxide on mouse DA MN9D cells. Collectively, our data indicate that expression of IL-13Rα1 on DA neurons can increase their susceptibility to oxidative stress-mediated damage, thereby contributing to their preferential loss. In humans, Il13ra1 lies on the X chromosome within the PARK12 locus of susceptibility to Parkinson's disease, suggesting that IL-13Rα1 may have a role in the pathogenesis of this neurodegenerative disease.


The role of ELK3 to regulate peritumoral lymphangiogenesis and VEGF-C production in triple negative breast cancer cells.

  • Nuri Oh‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Tumor-induced lymphangiogenesis, a major conduit for cancer cell dissemination from the primary tumor site to lymph nodes and beyond, eventually leads to metastasis in cancer patients. Given the recent evidence revealing that the suppression of ELK3 inhibits the metastasis of triple-negative breast cancer cells, we aimed to study the underlying mechanism of impaired metastasis in ELK3-suppressed MDA-MB-231 cells (ELK3 KD) with regard to lymphangiogenesis. We found that the secretome of ELK3 KD cells inhibited tube formation, whereas it promoted the migration and invasion of lymphatic endothelial cells (LECs) in vitro. In vivo analysis revealed that peritumoral lymphatic vessels were not developed around the xenografted tumors of ELK3 KD. We further revealed that the suppression of NF-κB signaling in ELK3 KD was the primary cause of the reduced VEGFC expression. Taken together, we suggest that ELK3 is an upstream regulator of the NF-κB signaling pathway, the inhibition of which leads to the suppression of peritumoral lymphatic vessel development, possibly due to a low VEGFC expression.


Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo.

  • Jisook Moon‎ et al.
  • Stem cells translational medicine‎
  • 2017‎

We have developed a good manufacturing practice for long-term cultivation of fetal human midbrain-derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region-specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum-free conditions and standardized operating protocols under clean-room conditions. Long-term-cultivated midbrain-derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9-specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain-derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain-derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long-term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high-content or high-throughput screening. Stem Cells Translational Medicine 2017;6:576-588.


Altered expression of norepinephrine transporter and norepinephrine in human placenta cause pre-eclampsia through regulated trophoblast invasion.

  • Kyu-Hwan Na‎ et al.
  • Clinical and experimental reproductive medicine‎
  • 2013‎

We investigated the norepinephrine transporter (NET) expression in normal and pre-eclamptic placentas and analyzed the invasion activity of trophoblastic cells based on norepinephrine (NE)-NET regulation.


The Korean Mistletoe (Viscum album coloratum) Extract Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity.

  • Hoe-Yune Jung‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

This study investigates the inhibitory effects of Korean mistletoe extract (KME) on adipogenic factors in 3T3-L1 cells and obesity and nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Male C57Bl/6 mice fed a high-fat diet were treated with KME (3 g/kg/day) for 15 weeks for the antiobesity and NAFLD experiments. Body weight and daily food intake were measured regularly during the experimental period. The epididymal pad was measured and liver histology was observed. The effects of KME on thermogenesis and endurance capacity were measured. The effects of KME on adipogenic factors were examined in 3T3-L1 cells. Body and epididymal fat pad weights were reduced in KME-treated mice, and histological examination showed an amelioration of fatty liver in KME-treated mice, without an effect on food consumption. KME potently induces mitochondrial activity by activating thermogenesis and improving endurance capacity. KME also inhibited adipogenic factors in vitro. These results demonstrate the inhibitory effects of KME on obesity and NAFLD in mice fed a high-fat diet. The effects appear to be mediated through an enhanced mitochondrial activity. Therefore, KME may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.


Coordinate Regulation of Neurite Outgrowth by LRRK2 and Its Interactor, Rab5.

  • Hye Young Heo‎ et al.
  • Experimental neurobiology‎
  • 2010‎

Neurite outgrowth and its maintenance are essential aspects of neuronal cells for their connectivity and communication with other neurons. Recent studies showed that over-expression of either leucine-rich repeat kinase 2 (LRRK2), whose mutations are associated with familial Parkinson's disease (PD), or Rab5b, an early endosomal marker protein, induces reduction in neurite length. Based on our recent findings that LRRK2 co-localizes and interacts with Rab5, we tested the hypothesis that LRRK2 and Rab5 may functionally interplay while controlling neurite outgrowth. Firstly, we confirmed previous reports that over-expression of either the LRRK2 PD-specific G2019S mutant or the Rab5 constitutively active Q79L mutant, but not of dominant negative N133I mutant, significantly reduces neurite outgrowth. Secondly, when over-expression of either LRRK2 wild type (WT) or G2019S was accompanied with over-expression of one of the Rab5 variants (WT, Q79L and N133I), or with down-regulation of Rab5, the reduction extent of its neurite length was similar to that of cells over-expressing LRRK2 alone, regardless of Rab5's status. Finally, we observed similar patterns of neurite length regulation in embryonic rat hippocampal neuron cultures. Taken together, our results suggest that LRRK2 and Rab5 functionally coordinate their regulation of neurite outgrowth and that LRRK2 is a more critical factor than Rab5.


Essential role for TRPC5 in amygdala function and fear-related behavior.

  • Antonio Riccio‎ et al.
  • Cell‎
  • 2009‎

The transient receptor potential channel 5 (TRPC5) is predominantly expressed in the brain where it can form heterotetrameric complexes with TRPC1 and TRPC4 channel subunits. These excitatory, nonselective cationic channels are regulated by G protein, phospholipase C-coupled receptors. Here, we show that TRPC5(-/-) mice exhibit diminished innate fear levels in response to innately aversive stimuli. Moreover, mutant mice exhibited significant reductions in responses mediated by synaptic activation of Group I metabotropic glutamate and cholecystokinin 2 receptors in neurons of the amygdala. Synaptic strength at afferent inputs to the amygdala was diminished in P10-P13 null mice. In contrast, baseline synaptic transmission, membrane excitability, and spike timing-dependent long-term potentiation at cortical and thalamic inputs to the amygdala were largely normal in older null mice. These experiments provide genetic evidence that TRPC5, activated via G protein-coupled neuronal receptors, has an essential function in innate fear.


Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons.

  • Sunghoi Hong‎ et al.
  • Journal of neurochemistry‎
  • 2008‎

Human embryonic stem (hES) cells have the ability to renew themselves and differentiate into multiple cell types upon exposure to appropriate signals. In particular, the ability of hES cells to differentiate into defined neural lineages, such as neurons, astrocytes, and oligodendrocytes, is fundamental to developing cell-based therapies for neurodegenerative disorders and studying developmental mechanisms. However, the utilization of hES cells for basic and applied research is hampered by the lack of well-defined methods to maintain their self-renewal and direct their differentiation. Recently we reported that neural precursor (NP) cells derived from mouse ES cells maintained their potential to differentiate into dopaminergic (DA) neurons after significant expansion in vitro. We hypothesized that NP cells derived from hES cells (hES-NP) could also undergo the same in vitro expansion and differentiation. To test this hypothesis, we passaged hES-NP cells and analyzed their proliferative and developmental properties. We found that hES-NP cells can proliferate approximately 380 000-fold after in vitro expansion for 12 weeks and maintain their potential to generate Tuj1+ neurons, GFAP+ astrocytes, and O4+ oligodendrocytes as well as tyrosine hydroxylase-positive (TH+) DA neurons. Furthermore, TH+ neurons originating from hES-NP cells expressed other midbrain DA markers, including Nurr1, Pitx3, Engrail-1, and aromatic l-amino acid decarboxylase, and released significant amounts of DA. In addition, hES-NP cells maintained their developmental potential through long-term storage (over 2 years) in liquid nitrogen and multiple freeze-thaw cycles. These results demonstrate that hES-NP cells have the ability to provide an expandable and unlimited human cell source that can develop into specific neuronal and glial subtypes.


GATA-3 regulates the transcriptional activity of tyrosine hydroxylase by interacting with CREB.

  • Seok Jong Hong‎ et al.
  • Journal of neurochemistry‎
  • 2006‎

The zinc finger transcription factor GATA-3 is a master regulator of type 2 T-helper cell development. Interestingly, in GATA-3-/- mice, noradrenaline (NA) deficiency is a proximal cause of embryonic lethality. However, neither the role of GATA-3 nor its target gene(s) in the nervous system were known. Here, we report that forced expression of GATA-3 resulted in an increased number of tyrosine hydroxylase (TH) expressing neurons in primary neural crest stem cell (NCSC) culture. We also found that GATA-3 transactivates the promoter function of TH via specific upstream sequences, a domain of the TH promoter residing at -61 to -39 bp. Surprisingly, this domain does not contain GATA-3 binding sites but possesses a binding motif, a cAMP response element (CRE), for the transcription factor, CREB. In addition, we found that site-directed mutation of this CRE almost completely abolished transactivation of the TH promoter by GATA-3. Furthermore, protein-protein interaction assays showed that GATA-3 is able to physically interact with CREB in vitro as well as in vivo. Based on these results, we propose that GATA-3 may regulate TH gene transcription via a novel and distinct protein-protein interaction, and directly contributes to NA phenotype specification.


Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson's disease.

  • Eva Hedlund‎ et al.
  • Stem cells (Dayton, Ohio)‎
  • 2008‎

Both fetal ventral mesencephalic (VM) and embryonic stem (ES) cell-derived dopamine neurons have been used successfully to correct behavioral responses in animal models of Parkinson's disease. However, grafts derived from fetal VM cells or from ES cells contain multiple cell types, and the majority of these cells are not dopamine neurons. Isolation of ES cell-derived dopamine neurons and subsequent transplantation would both elucidate the capacity of these neurons to provide functional input and also further explore an efficient and safer use of ES cells for the treatment of Parkinson's disease. Toward this goal, we used a Pitx3-enhanced green fluorescent protein (Pitx3-eGFP) knock-in mouse blastocyst-derived embryonic stem (mES) cell line and fluorescence-activated cell sorting (FACS) to select and purify midbrain dopamine neurons. Initially, the dopaminergic marker profile of intact Pitx3-eGFP mES cultures was evaluated after differentiation in vitro. eGFP expression overlapped closely with that of Pitx3, Nurr1, Engrailed-1, Lmx1a, tyrosine hydroxylase (TH), l-aromatic amino acid decarboxylase (AADC), and vesicular monoamine transporter 2 (VMAT2), demonstrating that these cells were of a midbrain dopamine neuron character. Furthermore, postmitotic Pitx3-eGFP(+) dopamine neurons, which constituted 2%-5% of all live cells in the culture after dissociation, could be highly enriched to >90% purity by FACS, and these isolated neurons were viable, extended neurites, and maintained a dopaminergic profile in vitro. Transplantation to 6-hydroxydopamine-lesioned rats showed that an enriched dopaminergic population could survive and restore both amphetamine- and apomorphine-induced functions, and the grafts contained large numbers of midbrain dopamine neurons, which innervated the host striatum. Disclosure of potential conflicts of interest is found at the end of this article.


Novel function of E26 transformation-specific domain-containing protein ELK3 in lymphatic endothelial cells.

  • Ji-In Park‎ et al.
  • Oncology letters‎
  • 2018‎

Lymphatic endothelial cells (LEC) are major components of the tumor microenvironment and, due to the relative leakiness of lymphatic vessels compared with blood vessels, are essential for tumor dissemination and metastasis. In the present study, small interfering RNA-mediated suppression of E26 transformation-specific domain-containing protein Elk-3 (ELK3) inhibited the proliferation, migration and tube-forming ability of LEC. Suppression of ELK3 decreased vascular endothelial-cadherin expression levels and increased the phosphorylation of β-catenin. Furthermore, vascular endothelial growth factor receptor-3 (VEGFR-3) mRNA and protein expression levels were suppressed by the transfection of LEC with siELK3. As VEGFR-3 serves a major role in lymphangiogenesis, ELK3 may be a novel therapeutic target to inhibit tumor dissemination through the lymphatic system.


Cerebrospinal fluid, plasma, and saliva in the BioFIND study: Relationships among biomarkers and Parkinson's disease Features.

  • Jennifer G Goldman‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2018‎

Examine relationships among neurodegenerative biomarkers and PD motor and nonmotor symptoms.


Elevated In Vitro Kinase Activity in Peripheral Blood Mononuclear Cells of Leucine-Rich Repeat Kinase 2 G2019S Carriers: A Novel Enzyme-Linked Immunosorbent Assay-Based Method.

  • Katerina Melachroinou‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2020‎

Leucine-rich repeat kinase 2 kinase inhibitors are being vigorously pursued as potential therapeutic options; however, there is a critical need for sensitive and quantitative assays of leucine-rich repeat kinase 2 function and target engagement.


Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics.

  • Kwang-Soo Kim‎ et al.
  • Biomaterials‎
  • 2019‎

Recently, natural killer (NK)-based immunotherapy has attracted attention as a next-generation cell-based cancer treatment strategy due to its mild side effects and excellent therapeutic efficacy. Here, we describe multifunctional nanoparticles (MF-NPs) capable of genetically manipulating NK cells and tracking them in vivo through non-invasive magnetic resonance (MR) and fluorescence optical imaging. The MF-NPs were synthesized with a core-shell structure by conjugation of a cationic polymer labeled with a near-infrared (NIR) fluorescent molecule, with the aid of a polydopamine (PDA) coating layer. When administered to NKs, the MF-NPs exhibited excellent cytocompatibility, efficiently delivered genetic materials into the immune cells, and induced target protein expression. In particular, the MF-NPs could induce the expression of EGFR targeting chimeric antigen receptors (EGFR-CARs) on the NK cell surface, which improved the cells' anti-cancer cytotoxic effect both in vitro and in vivo. Finally, when NK cells labeled with MF-NPs were injected into live mice, MF-NP-labeled NK cells could be successfully imaged using fluorescence and MR imaging devices. Our findings indicate that MF-NPs have great potential for application of NK cells, as well as other types of cell therapies involving genetic engineering and in vivo monitoring of cell trafficking.


Exercise Reverses Dysregulation of T-Cell-Related Function in Blood Leukocytes of Patients With Parkinson's Disease.

  • Yong Hu‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Parkinson's disease (PD) is a common neurodegenerative disease with movement and balance impairments. Although studies have reported improvement of motor symptoms with physical exercise, the mechanisms by which exercise is beneficial remains poorly understood. Our study addresses the exercise-induced changes to peripheral immune cells by interrogating the transcriptome of blood-derived leukocytes in PD patients before and after exercise. Patients attended 1 h exercise classes twice a week for 12 weeks. Leukocytes were collected at the beginning and end of the study for gene expression analysis by RNA-seq or quantitative real-time PCR. We correlated differentially expressed genes after exercise with clinical measures and analyzed the potential functions of gene changes with Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analysis. Exercise improved measures of movement and balance when compared with scores before the exercise program. Among the gene changes, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis suggests that T-cell receptor signaling, T-cell activation, and T-cell migration pathways were downregulated, while the T-cell receptor signaling pathway was the most significantly correlated with clinical measures. To further investigate T-cell-related changes in PD leukocytes, we reanalyzed the differentially expressed genes from publicly available microarray data and found that genes in the T-cell activation, differentiation, and migration pathways were upregulated in PD samples compared to controls in a time-dependent manner. Together, our findings suggest that exercise rehabilitation may improve movement and balance in PD patients by reversing the upregulated T-cell activation pathways associated with PD. This study was registered with the Chinese Clinical Trial Registry under ChiCTR-TRC-14004707. Registered on May 27, 2014.


Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice.

  • William A Carlezon‎ et al.
  • Scientific reports‎
  • 2019‎

Increasing evidence suggests a role for inflammation in neuropsychiatric conditions including autism spectrum disorder (ASD), a neurodevelopmental syndrome with higher prevalence in males than females. Here we examined the effects of early-life immune system activation (EIA)-comprising regimens of prenatal, early postnatal, or combined ("two-hit") immune activation-on the core behavioral features of ASD (decreased social interaction, increased repetitive behavior, and aberrant communication) in C57BL/6J mice. We treated timed-pregnant mice with polyinosinic:polycytidylic acid (Poly I:C) on gestational day 12.5 to produce maternal immune activation (MIA). Some offspring also received lipopolysaccharide (LPS) on postnatal day 9 to produce postnatal immune activation (PIA). EIA produced disruptions in social behavior and increases in repetitive behaviors that were larger in males than in females. Ultrasonic vocalizations (USVs) were altered in both sexes. Molecular studies revealed that EIA also produced prominent sex-specific changes in inflammation-related gene expression in the brain. Whereas both sexes showed increases in pro-inflammatory factors, as reflected by levels of mRNA and protein, expression of anti-inflammatory factors was decreased in males but increased in females. Our findings demonstrate that EIA can produce sex-specific behavioral effects and immune responses in the brain, and identify molecular processes that may contribute to resilience in females.


α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy.

  • Suman Dutta‎ et al.
  • Acta neuropathologica‎
  • 2021‎

The diagnosis of Parkinson's disease (PD) and atypical parkinsonian syndromes is difficult due to the lack of reliable, easily accessible biomarkers. Multiple system atrophy (MSA) is a synucleinopathy whose symptoms often overlap with PD. Exosomes isolated from blood by immunoprecipitation using CNS markers provide a window into the brain's biochemistry and may assist in distinguishing between PD and MSA. Thus, we asked whether α-synuclein (α-syn) in such exosomes could distinguish among healthy individuals, patients with PD, and patients with MSA. We isolated exosomes from the serum or plasma of these three groups by immunoprecipitation using neuronal and oligodendroglial markers in two independent cohorts and measured α-syn in these exosomes using an electrochemiluminescence ELISA. In both cohorts, α-syn concentrations were significantly lower in the control group and significantly higher in the MSA group compared to the PD group. The ratio between α-syn concentrations in putative oligodendroglial exosomes compared to putative neuronal exosomes was a particularly sensitive biomarker for distinguishing between PD and MSA. Combining this ratio with the α-syn concentration itself and the total exosome concentration, a multinomial logistic model trained on the discovery cohort separated PD from MSA with an AUC = 0.902, corresponding to 89.8% sensitivity and 86.0% specificity when applied to the independent validation cohort. The data demonstrate that a minimally invasive blood test measuring α-syn in blood exosomes immunoprecipitated using CNS markers can distinguish between patients with PD and patients with MSA with high sensitivity and specificity. Future optimization and validation of the data by other groups would allow this strategy to become a viable diagnostic test for synucleinopathies.


Complete mitochondrial genome of the commensal scale worm, Arctonoe vittata (Grube, 1855) (Polychaeta: Polynoidae), collected from benthic habitat of the eastern coast of Korea.

  • Jiseon Park‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

The complete mitogenome sequence of the commensal polynoid scale worm Arctonoe vittata was determined for the first time in the present study. The total length of the newly sequenced mitogenome was 15,125 bp, including 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The phylogenetic position of A. vittata was examined by maximum likelihood analysis using concatenated 13 protein-coding genes with 18 selected polychaete species. Arctonoe vittata was nested within the suborder Aphroditiformia and closely related to Aphrodita australis among the selected species. The newly determined mitogenome sequence will be useful for further phylogenetic and evolutionary studies of this group.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: