Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 191 papers

Distinct and Dynamic ON and OFF Neural Ensembles in the Prefrontal Cortex Code Social Exploration.

  • Bo Liang‎ et al.
  • Neuron‎
  • 2018‎

The medial prefrontal cortex (mPFC) is important for social behavior, but the mechanisms by which mPFC neurons code real-time social exploration remain largely unknown. Here we utilized miniScopes to record calcium activities from hundreds of excitatory neurons in the mPFC while mice freely explored restrained social targets in the absence or presence of the psychedelic drug phencyclidine (PCP). We identified distinct and dynamic ON and OFF neural ensembles that displayed opposing activities to code real-time behavioral information. We further illustrated that ON and OFF ensembles tuned to social exploration carried information of salience and novelty for social targets. Finally, we showed that dysfunctions in these ensembles were associated with abnormal social exploration elicited by PCP. Our findings underscore the importance of mPFC ON and OFF neural ensembles for proper exploratory behavior, including social exploration, and pave the way for future studies elucidating neural circuit dysfunctions in psychiatric disorders.


Common Variants in PLXNA4 and Correlation to CSF-related Phenotypes in Alzheimer's Disease.

  • Qiu Han‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

The Plexin-A 4 (PLXNA4) gene, has recently been identified in genome wide association studies (GWAS), as a novel genetic player associated with Alzheimer's disease (AD). Additionally, PLXNA4 genetic variations were also found to increase AD risk by tau pathology in vitro. However, the potential roles of PLXNA4 variants in the amyloid-β (Aβ) pathology, were not evaluated. Five targeted loci capturing the top common variations in PLXNA4, were extracted using tagger methods. Multiple linear regression models were used to explore whether these variations can affect the cerebrospinal fluid (CSF) (Aβ1-42, T-tau, and P-tau) phenotypes in the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset. We detected that two loci (rs6467431, rs67468325) were significantly associated with CSF Aβ1-42 levels in the hybrid population (rs6467431: P = 0.01376, rs67468325: P = 0.006536) and the significance remained after false discovery rate (FDR) correction (rs6467431: Pc = 0.03441, rs67468325: Pc = 0.03268). In the subgroup analysis, we further confirmed the association of rs6467431 in the cognitively normal (CN) subgroup (P = 0.01904, Pc = 0.04761). Furthermore, rs6467431-A carriers and rs67468325-G carriers showed higher CSF Aβ1-42 levels than non-carriers. Nevertheless, we did not detect any significant relationships between the levels of T-tau, P-tau and these PLXNA4 loci. Our findings provided preliminary evidence that PLXNA4 variants can confer AD risk through modulating the Aβ deposition.


Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells.

  • Chun Chen‎ et al.
  • Oncotarget‎
  • 2017‎

Heat shock protein 90 (Hsp90) contains amino (N)-terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states.


Cloning and characterization of the first serine carboxypeptidase from a plant parasitic nematode, Radopholus similis.

  • Xin Huang‎ et al.
  • Scientific reports‎
  • 2017‎

Radopholus similis is an important parasitic nematode of plants. Serine carboxypeptidases (SCPs) are peptidases that hydrolyse peptides and proteins and play critical roles in the development, invasion, and pathogenesis of certain parasitic nematodes and other animal pathogens. In this study, we obtained the full-length sequence of the SCP gene from R. similis (Rs-scp-1), which is 1665 bp long and includes a 1461-bp open reading frames encoding 486 amino acids with an 18-aa signal peptide. This gene is a double-copy gene in R. similis. Rs-scp-1 was expressed in the procorpus, esophageal glands and intestines of females and in the esophageal glands and intestines of juveniles. Rs-scp-1 expression levels were highest in females, followed by juveniles and males, and lowest in eggs. Rs-scp-1 expression levels were significantly suppressed after R. similis was soaked in Rs-scp-1 dsRNA for 12 h. Nematodes were then inoculated into Anthurium andraeanum after RNAi treatment. Compared with water treatment, R. similis treated with RNAi were reduced in number and pathogenicity. In summary, we obtained the first SCP gene from a plant parasitic nematode and confirmed its role in the parasitic process.


Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages.

  • Shutao Zhang‎ et al.
  • PloS one‎
  • 2017‎

The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.


Modeling the estrogen receptor to growth factor receptor signaling switch in human breast cancer cells.

  • Chun Chen‎ et al.
  • FEBS letters‎
  • 2013‎

Breast cancer cells develop resistance to endocrine therapies by shifting between estrogen receptor (ER)-regulated and growth factor receptor (GFR)-regulated survival signaling pathways. To study this switch, we propose a mathematical model of crosstalk between these pathways. The model explains why MCF7 sub-clones transfected with HER2 or EGFR show three GFR-distribution patterns, and why the bimodal distribution pattern can be reversibly modulated by estrogen. The model illustrates how transient overexpression of ER activates GFR signaling and promotes estrogen-independent growth. Understanding this survival-signaling switch can help in the design of future therapies to overcome resistance in breast cancer.


Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis.

  • Eleni Bazigou‎ et al.
  • Developmental cell‎
  • 2009‎

Dysfunction of lymphatic valves underlies human lymphedema, yet the process of valve morphogenesis is poorly understood. Here, we show that during embryogenesis, lymphatic valve leaflet formation is initiated by upregulation of integrin-alpha9 expression and deposition of its ligand fibronectin-EIIIA (FN-EIIIA) in the extracellular matrix. Endothelial cell-specific deletion of Itga9 (encoding integrin-alpha9) in mouse embryos results in the development of rudimentary valve leaflets characterized by disorganized FN matrix, short cusps, and retrograde lymphatic flow. Similar morphological and functional defects are observed in mice lacking the EIIIA domain of FN. Mechanistically, we demonstrate that in primary human lymphatic endothelial cells, the integrin-alpha9-EIIIA interaction directly regulates FN fibril assembly, which is essential for the formation of the extracellular matrix core of valve leaflets. Our findings reveal an important role for integrin-alpha9 signaling during lymphatic valve morphogenesis and implicate it as a candidate gene for primary lymphedema caused by valve defects.


Influence of Renal Sympathetic Denervation in Patients with Early-Stage Heart Failure Versus Late-Stage Heart Failure.

  • Jie Geng‎ et al.
  • International heart journal‎
  • 2018‎

Renal sympathetic denervation (RDN) is currently being investigated in multiple studies of heart failure (HF). Our aim was to assess the safety and effectiveness of RDN in patients with HF, and determine which patients could achieve more beneficial effects of RDN. A total of 17 consecutive patients with HF were enrolled in the study. Clinical symptoms, office blood pressure, and laboratory results were obtained and echocardiography was performed before and 12 months after RDN. Changes from baseline to 12 months were analyzed for all patients and for two subgroups based on HF duration (group 1: HF duration ≤ 3 years, n = 9; group 2: HF duration > 3 years, n = 8). The RDN procedure was successful in all patients and no procedure-related complications were documented. In comparison to baseline, there was a significant increase in left ventricular ejection fraction (LVEF) in all patients and group 1 (P < 0.05 for both), which did not happen in group 2. LAD, LVDs, and RVD also showed a significant reduction in group 1 (P < 0.05 for both). At 12 months, the reductions in TNF-α and CRP were significant for all patients and for patients in group 1 separately. No obvious changes in echocardiographic parameters, 6-minute walking distance, TNF-α, or CRP were recorded in group 2. No changes in BNP in either group were observed at the 12th month of follow-up. RDN could improve cardiac function and led to a significant drop in inflammatory markers in patients with HF. We also found that patients in early-stage HF could benefit more from RDN.


The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis.

  • Shuo Geng‎ et al.
  • Nature communications‎
  • 2016‎

Sustained low-grade inflammation mediated by non-resolving inflammatory monocytes has long been suspected in the pathogenesis of atherosclerosis; however, the molecular mechanisms responsible for the sustainment of non-resolving inflammatory monocytes during atherosclerosis are poorly understood. Here we observe that subclinical endotoxemia, often seen in humans with chronic inflammation, aggravates murine atherosclerosis through programming monocytes into a non-resolving inflammatory state with elevated Ly6C, CCR5, MCP-1 and reduced SR-B1. The sustainment of inflammatory monocytes is due to the disruption of homeostatic tolerance through the elevation of miR-24 and reduction of the key negative-feedback regulator IRAK-M. miR-24 reduces the levels of Smad4 required for the expression of IRAK-M and also downregulates key lipid-processing molecule SR-B1. IRAK-M deficiency in turn leads to elevated miR-24 levels, sustains disruption of monocyte homeostasis and aggravates atherosclerosis. Our data define an integrated feedback circuit in monocytes and its disruption may lead to non-resolving low-grade inflammation conducive to atherosclerosis.


Novel Functions of the Fatty Acid and Retinol Binding Protein (FAR) Gene Family Revealed by Fungus-Mediated RNAi in the Parasitic Nematode, Aphelenchoides besseyi.

  • Shanwen Ding‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

RNA interference (RNAi) is a powerful tool for the analysis of gene function in nematodes. Fatty acid and retinol binding protein (FAR) is a protein that only exists in nematodes and plays an important role in their life activities. The rice white-tip nematode (RWTN), Aphelenchoides besseyi, is a migratory endoparasitic plant nematode that causes serious damage in agricultural production. In this study, the expression levels of eight RWTN genes were effectively decreased when RWTN was fed Ab-far-n (n: 1-8) hairpin RNA transgenic Botrytis cinerea (ARTBn). These functions of the far gene family were identified to be consistent and diverse through phenotypic changes after any gene was silenced. Such consistency indicates that the body lengths of the females were significantly shortened after silencing any of the eight Ab-far genes. The diversities were mainly manifested as follows: (1) Reproduction of nematodes was clearly inhibited after Ab-far-1 to Ab-far-4 were silenced. In addition, silencing Ab-far-2 could inhibit the pathogenicity of nematodes to Arabidopsis; (2) gonad length of female nematodes was significantly shortened after Ab-far-2 and Ab-far-4 were silenced; (3) proportion of male nematodes significantly increased in the adult population after Ab-far-1, Ab-far-3, and Ab-far-5 were silenced, whereas the proportion of adult nematodes significantly decreased in the nematode population after Ab-far-4 were silenced. (4) Fat storage of nematodes significantly decreased after Ab-far-3, Ab-far-4, and Ab-far-7 were silenced. To our knowledge, this is the first study to demonstrate that Ab-far genes affect sex formation and lipid metabolism in nematodes, which provides valuable data for further study and control of RWTNs.


Metabolic synthetic lethality by targeting NOP56 and mTOR in KRAS-mutant lung cancer.

  • Zhang Yang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2022‎

Oncogenic KRAS mutations are prevalent in human cancers, but effective treatment of KRAS-mutant malignancies remains a major challenge in the clinic. Increasing evidence suggests that aberrant metabolism plays a central role in KRAS-driven oncogenic transformation. The aim of this study is to identify selective metabolic dependency induced by mutant KRAS and to exploit it for the treatment of the disease.


Dual inhibition of αvβ6 and αvβ1 reduces fibrogenesis in lung tissue explants from patients with IPF.

  • Martin L Decaris‎ et al.
  • Respiratory research‎
  • 2021‎

αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs.


Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis.

  • Song-Tao Xue‎ et al.
  • Molecular cancer‎
  • 2022‎

Esophageal squamous cell carcinoma (ESCC) is a common invasive malignancy worldwide with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been reported to be involved in cancer development. However, lncRNAs that are functional in ESCC and the underlying molecular mechanisms remain largely unknown.


miR-21-5p is a Biomarker for Predicting Prognosis of Lung Adenocarcinoma by Regulating PIK3R1 Expression.

  • Jianting Du‎ et al.
  • International journal of general medicine‎
  • 2021‎

Lung cancer (LUCA) is one of the most prevalent human malignancies, and the leading cause of cancer-related deaths worldwide. Previous reports have shown that miR-21-5p plays a vital role in development of various tumors. Here, we explored the relationship between miR-21-5p/PIK3R1 axis and prognosis of patients with lung adenocarcinoma (LUAD).


Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer.

  • Xian Gong‎ et al.
  • Journal of thoracic disease‎
  • 2021‎

Accurate prognostic estimation for esophageal cancer (EC) patients plays an important role in the process of clinical decision-making. The objective of this study was to develop an effective model to predict the 5-year survival status of EC patients using machine learning (ML) algorithms.


Comparative Efficacy and Safety of Dopamine Agonists in Advanced Parkinson's Disease With Motor Fluctuations: A Systematic Review and Network Meta-Analysis of Double-Blind Randomized Controlled Trials.

  • Xinglin Ruan‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Background: Movement fluctuations are the main complication of Parkinson's disease (PD) patients receiving long-term levodopa (L-dopa) treatment. We compared and ranked the efficacy and safety of dopamine agonists (DAs) with regard to motor fluctuations by using a Bayesian network meta-analysis (NMA) to quantify information from randomized controlled trials (RCTs). Methods and Findings: We carried out a systematic review and meta-analysis, and only RCTs comparing DAs for advanced PD were included. Electronic databases (PubMed, Embase, and Cochrane Library) were systematically searched for relevant studies published until January 2021. Two reviewers independently extracted individual study data and evaluated studies for risk of bias using the Cochrane Risk of Bias tool. Network meta-analyses using a Bayesian framework were used to calculate the related parameters. The pre-specified primary and secondary outcomes were efficacy ("ON" time without troublesome dyskinesia, "OFF" time, "ON" time, "UPDRS-III," and "UPDRS-II") and safety [treatment-emergent adverse events (TEAE) and other adverse events] of DAs. The results are presented as the surface under the cumulative ranking (SUCRA) curve. A total of 20 RCTs assessing 6,560 patients were included. The general DA effects were ranked from high to low with respect to the amount of "ON" time without troublesome dyskinesia as follows: apomorphine (SUCRA = 97.08%), pramipexole_IR (probability = 79.00%), and ropinirole_PR (SUCRA = 63.92%). The general safety of DAs was ranked from high to low with respect to TEAE as follows: placebo (SUCRA = 74.49%), pramipexole_ER (SUCRA = 63.6%), sumanirole (SUCRA = 54.07%), and rotigotine (SUCRA = 53.84%). Conclusions: This network meta-analysis shows that apomorphine increased "ON" time without troublesome dyskinesia and decreased "OF" time for advanced PD patients. The addition of pramipexole, ropinirole, or rotigotine to levodopa treatment in advanced PD patients with motor fluctuations increased "ON" time without troublesome dyskinesia, improved the UPDRS III scores, and ultimately ameliorated the UPDRS II scores, thereby maximizing its benefit. This NMA of pramipexole, ropinirole, and rotigotine represents an effective treatment option and has an acceptable safety profile in patients with advanced PD.


The treatment efficacy of pharmacotherapies for rapid eye movement sleep behavior disorder with polysomnography evaluation: A systematic review and meta-analysis.

  • Zhiqiang Que‎ et al.
  • Heliyon‎
  • 2022‎

Clonazepam and melatonin are commonly used as first-line medications for the treatment of rapid eye movement (REM) sleep behavior disorder (RBD), with other medications used in the clinic including pramipexole, ramelteon, and rotigotine. We performed a systematic review and meta-analysis of randomized and non-randomized controlled trials to assess the efficacy of these treatment options in RBD patients with polysomnography. We systematically retrieved results of randomized and non-randomized controlled trials using the PubMed, Embase, and Cochrane databases. Of the 454 studies identified, 13 were considered eligible for inclusion in the study. In comparison to baseline, clonazepam was found to significantly decrease the percentage of stage 2 sleep [4.00 (95% CI = 0.90 to 7.10)] in RBD patients. Melatonin was found to significantly improve patients' sleep efficiency [2.51(95% CI = 0.75 to 4.28)], significantly reduce the time spent in bed (TIB) [-11.71(95% CI = -23.05 to -0.37)], phasic activity[-25.79(95% CI = -42.13 to -9.46)] and tonic activity[-10.44(95% CI = -12.24 to -8.64)]. RWA[-5.87 (95% CI = -8.25 to -3.50)] significantly improve with the use of ramelteon. Pramipexole was found to significantly increase the total sleep time (TST) [27.17 (95% CI = 0.06 to 54.29)], and significantly reduce the periodic limb movements of sleep (PLMS) index [-11.42(95% CI = -21.38 to -1.47)]. We also found that pramipexole had different effects on idiopathic RBD (iRBD) and secondary RBD (sRBD). These results will help to guide the clinical use of medication in patients with RBD.


The Metabolic Signature of AML Cells Treated With Homoharringtonine.

  • Yulong Zhang‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Acute myeloid leukemia (AML) is a hematologic malignancy. The overall prognosis is poor and therapeutic strategies still need to be improved. Studies have found that abnormalities in metabolisms promote the survival of AML cells. In recent years, an increasing number of studies have reported the effectiveness of a protein synthesis inhibitor, homoharringtonine (HHT), for the treatment of AML. In this study, we demonstrated that HHT effectively inhibited AML cells, especially MV4-11, a cell line representing human AML carrying the poor prognostic marker FLT3-ITD. We analyzed the transcriptome of MV4-11 cells treated with HHT, and identified the affected metabolic pathways including the choline metabolism process. In addition, we generated a line of MV4-11 cells that were resistant to HHT. The transcriptome analysis showed that the resistant mechanism was closely related to the ether lipid metabolism pathway. The key genes involved in these processes were AL162417.1, PLA2G2D, and LPCAT2 by multiple intergroup comparison and Venn analysis. In conclusion, we found that the treatment of HHT significantly changed metabolic signatures of AML cells, which may contribute to the precise clinical use of HHT and the development of novel strategies to treat HHT-resistant AML.


Stress-induced glucocorticoid desensitizes adrenoreceptors to gate the neuroendocrine response to somatic stress in male mice.

  • Zhiying Jiang‎ et al.
  • Cell reports‎
  • 2022‎

Noradrenergic afferents to hypothalamic corticotropin releasing hormone (CRH) neurons provide a major excitatory drive to the hypothalamic-pituitary-adrenal (HPA) axis via α1 adrenoreceptor activation. Noradrenergic afferents are recruited preferentially by somatic, rather than psychological, stress stimuli. Stress-induced glucocorticoids feed back onto the hypothalamus to negatively regulate the HPA axis, providing a critical autoregulatory constraint that prevents glucocorticoid overexposure and neuropathology. Whether negative feedback mechanisms target stress modality-specific HPA activation is not known. Here, we describe a desensitization of the α1 adrenoreceptor activation of the HPA axis following acute stress in male mice that is mediated by rapid glucocorticoid regulation of adrenoreceptor trafficking in CRH neurons. Glucocorticoid-induced α1 receptor trafficking desensitizes the HPA axis to a somatic but not a psychological stressor. Our findings demonstrate a rapid glucocorticoid suppression of adrenergic signaling in CRH neurons that is specific to somatic stress activation, and they reveal a rapid, stress modality-selective glucocorticoid negative feedback mechanism.


Novel transketolase inhibitor oroxylin A suppresses the non-oxidative pentose phosphate pathway and hepatocellular carcinoma tumour growth in mice and patient-derived organoids.

  • Dan Jia‎ et al.
  • Clinical and translational medicine‎
  • 2022‎

Transketolase (TKT), a key rate-limiting enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), provides more than 85% of the ribose required for de novo nucleotide biosynthesis and promotes the development of hepatocellular carcinoma (HCC). Pharmacologic inhibition of TKT could impede HCC development and enhance treatment efficacy. However, no safe and effective TKT inhibitor has been approved.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: