Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

The Antioxidant and Anti-Inflammatory Activities of 8-Hydroxydaidzein (8-HD) in Activated Macrophage-Like RAW264.7 Cells.

  • Eunji Kim‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

8-Hydroxydaidzein (8-HD) is a daidzein metabolite isolated from soybeans. This compound has been studied for its anti-proliferation, depigmentation, and antioxidant activities. However, the anti-inflammatory activities of 8-HD are not well-understood. Through its antioxidant effects in ABTS and DPPH assays, 8-HD reduces the production of sodium nitroprusside (SNP)-induced radical oxygen species (ROS). By triggering various Toll-like receptors (TLRs), 8-HD suppresses the inflammatory mediator nitric oxide (NO) without cytotoxicity. We examined the regulatory mechanism of 8-HD in lipopolysaccharide (LPS)-induced conditions. We found that 8-HD diminishes inflammatory gene expression (e.g., inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-α) by regulating the transcriptional activities of nuclear factor (NF)-κB and activator protein 1 (AP-1). To find the potential targets of 8-HD, signaling pathways were investigated by immunoblotting analyses. These analyses revealed that 8-HD inhibits the activation of TAK1 and that phosphorylated levels of downstream molecules decrease in sequence. Together, our results demonstrate the antioxidant and anti-inflammatory actions of 8-HD and suggest its potential use in cosmetics or anti-inflammatory drugs.


Dehydroabietic Acid Suppresses Inflammatory Response Via Suppression of Src-, Syk-, and TAK1-Mediated Pathways.

  • Eunji Kim‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Dehydroabietic acid (DAA) is a naturally occurring diterpene resin acid derived from coniferous plants such as Pinus and Picea. Various bioactive effects of DAA have been studied including antibacterial, antifungal, and anticancer activities. However, the anti-inflammatory mechanism of DAA remains unclear. We evaluated the anti-inflammatory effect of DAA in macrophage cell lines. Dehydroabietic acid clearly reduced nitric oxide (NO) production and inflammatory gene expression decreased according to RT-PCR results. Dehydroabietic acid displayed anti-inflammatory activity at the transcriptional level in results from NF-κB- or AP-1-mediated luciferase assays. To identify the DAA target protein, we investigated NF-κB and AP-1 pathways by Western blotting analysis. Dehydroabietic acid suppressed the activity of proto-oncogene tyrosine protein kinase (Src) and spleen tyrosine kinase (Syk) in the NF-κB cascade and transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 cascade. Using overexpression strategies, we confirmed that DAA targeted these kinases. Our findings demonstrate the anti-inflammatory effects and molecular mechanism of DAA. This suggests that DAA has potential as a drug or supplement to ameliorate inflammation.


Transcriptome Analyses Identify Potential Key microRNAs and Their Target Genes Contributing to Ovarian Reserve.

  • Yoon-Young Kim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Female endocrinological symptoms, such as premature ovarian inefficiency (POI) are caused by diminished ovarian reserve and chemotherapy. The etiology of POI remains unknown, but this can lead to infertility. This has accelerated the search for master regulator genes or other molecules that contribute as enhancers or silencers. The impact of regulatory microRNAs (miRNAs) on POI has gained attention; however, their regulatory function in this condition is not well known. RNA sequencing was performed at four stages, 2-(2 W), 6-(6 W), 15-(15 W), and 20-(20 W) weeks, on ovarian tissue samples and 5058 differentially expressed genes (DEGs) were identified. Gene expression and enrichment were analyzed based on the gene ontology and KEGG databases, and their association with other proteins was assessed using the STRING database. Gene set enrichment analysis was performed to identify the key target genes. The DEGs were most highly enriched in 6 W and 15 W groups. Figla, GDF9, Nobox, and Pou51 were significantly in-creased at 2 W compared with levels at 6 W and 20 W, whereas the expression of Foxo1, Inha, and Taf4b was significantly de-creased at 20 W. Ccnd2 and Igf1 expression was maintained at similar levels in each stage. In total, 27 genes were upregulated and 26 genes interacted with miRNAs; moreover, stage-specific upregulated and downregulated interactions were demonstrated. Increased and decreased miRNAs were identified at each stage in the ovaries. The constitutively expressed genes, Ccnd2 and Igf1, were identified as the major targets of many miRNAs (p < 0.05), and Fshr and Foxo3 interacted with miRNAs, namely mmu-miR-670-3p and mmu-miR-153-3p. miR-26a-5p interacted with Piwil2, and its target genes were downregulated in the 20 W mouse ovary. In this study, we aimed to identify key miRNAs and their target genes encompassing the reproductive span of mouse ovaries using mRNA and miRNA sequencing. These results indicated that gene sets are regulated in the reproductive stage-specific manner via interaction with miRNAs. Furthermore, consistent expression of Ccnd2 and Igf1 is considered crucial for the ovarian reserve and is regulated by many interactive miRNAs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: