Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Endoscopic application of mussel-inspired phenolic chitosan as a hemostatic agent for gastrointestinal bleeding: A preclinical study in a heparinized pig model.

  • In Kyung Yoo‎ et al.
  • PloS one‎
  • 2021‎

Marine mussels secrete adhesive proteins to attach to solid surfaces. These proteins contain phenolic and basic amino acids exhibiting wet adhesion properties. This study used a mussel-inspired hemostatic polymer, chitosan-catechol, to treat gastrointestinal bleeding caused by endoscopic mucosal resection in a heparinized porcine model. We aimed to evaluate the hemostatic efficacy and short-term safety of this wet adhesive chitosan-catechol. We used 15 heparinized pigs. Four iatrogenic bleeding ulcers classified as Forrest Ib were created in each pig using an endoscopic mucosal resection method. One ulcer in each pig was untreated as a negative control (no-treatment group). The other three ulcers were treated with gauze (gauze group), argon plasma coagulation (APC group), and chitosan-catechol hemostatic agent (CHI-C group) each. The pigs were sacrificed on Days 1, 5, and 10, and histological examination was performed (n = 5 per day). Rapid hemostasis observed at 2 min after bleeding was 93.3% (14/15) in the CHI-C group, 6.7% (1/15) in the no-treatment group, 13.3% (2/15) in the gauze group, and 86.7% (13/15) in the APC group. No re-bleeding was observed in the CHI-C group during the entire study period. However, a few re-bleeding cases were observed on Day 1 in the no-treatment, gauze, and APC groups and on Day 5 in the gauze and APC groups. On histological analysis, the CHI-C group showed the best tissue healing among the four test groups. Considering the results, chitosan-catechol is an effective hemostatic material with reduced re-bleeding and improved healing.


Coagulopathy-independent, bioinspired hemostatic materials: A full research story from preclinical models to a human clinical trial.

  • Keumyeon Kim‎ et al.
  • Science advances‎
  • 2021‎

Since the first report of underwater adhesive proteins of marine mussels in 1981, numerous studies have reported mussel-inspired synthetic adhesive polymers. However, none of them have developed up to human-level translational studies. Here, we report a sticky polysaccharide that effectively promotes hemostasis from animal bleeding models to first-in-human hepatectomy. We found that the hemostatic material instantly generates a barrier layer that seals hemorrhaging sites. The barrier is created within a few seconds by in situ interactions with abundant plasma proteins. Therefore, as long as patient blood contains proper levels of plasma proteins, hemostasis should always occur even in coagulopathic conditions. To date, insufficient tools have been developed to arrest coagulopathic bleedings originated from genetic disorders, chronic diseases, or surgical settings such as organ transplantations. Mussel-inspired adhesion chemistry described here provides a useful alternative to the use of fibrin glues up to a human-level biomedical application.


CTCF-mediated chromatin looping provides a topological framework for the formation of phase-separated transcriptional condensates.

  • Ryanggeun Lee‎ et al.
  • Nucleic acids research‎
  • 2022‎

CTCF is crucial to the organization of mammalian genomes into loop structures. According to recent studies, the transcription apparatus is compartmentalized and concentrated at super-enhancers to form phase-separated condensates and drive the expression of cell-identity genes. However, it remains unclear whether and how transcriptional condensates are coupled to higher-order chromatin organization. Here, we show that CTCF is essential for RNA polymerase II (Pol II)-mediated chromatin interactions, which occur as hyperconnected spatial clusters at super-enhancers. We also demonstrate that CTCF clustering, unlike Pol II clustering, is independent of liquid-liquid phase-separation and resistant to perturbation of transcription. Interestingly, clusters of Pol II, BRD4, and MED1 were found to dissolve upon CTCF depletion, but were reinstated upon restoration of CTCF, suggesting a potent instructive function for CTCF in the formation of transcriptional condensates. Overall, we provide evidence suggesting that CTCF-mediated chromatin looping acts as an architectural prerequisite for the assembly of phase-separated transcriptional condensates.


Chitosan oral patches inspired by mussel adhesion.

  • Ji Hyun Ryu‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

Oral mucosal drug delivery systems have been developed to expedite the regeneration of oral mucosa, there are still many challenges related to residence time for drugs because the ceaseless changes of saliva, mouth movement, and involuntary swallowing prevent robust adhesion of drugs and/or drug-loaded biomaterials. Thus, it is highly desirable to develop the delivery platforms exhibiting robust, stable adhesion within oral cavities. Herein, we have developed an adhesive polysaccharide oral patch called 'Chitoral' that utilizes chemical principles shown in wet-resistant mussel adhesion. Chitoral plays an important role as an adhesive layer in wet environments. We unexpectedly found that Chitoral instantly dissolves upon contact with saliva and a labial mucous layer, and then the dissolved Chitoral compounds forms an insoluble adhesion layer with mucins at Chitoral/mucous interface nearly immediate actions. Later, Chitoral gradually converts into adhesive hydrogels by the cooperative actions of covalent crosslinking and physical entanglement. The instant, robust muco-adhesion properties of Chitoral provides long-lasting therapeutic effects of drugs resulting enhanced healing of oral ulcer. Thus, mussel-inspired, mucous-resistant adhesive platforms, Chitoral, can be a platform for oral mucosal drug delivery systems.


ZnO nanoparticle-embedded modified silk fibroin-tannin multifunctional hydrogel.

  • Chul Min Yang‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Owing to the destruction of ozone layer, the increased exposure to UV on the earth adversely affects not only skin diseases but also wound healing. Although the demand for sunscreens is increasing to protect the human skin from these adverse effects, commercially available sunscreens have some limitations in safety. In this study, silk fibroin (SF) composite with biocompatibility and blood coagulation activity was prepared for a highly safe sunscreen. However, the SF has a disadvantage in that it is difficult to dissolve in water. To improve the solubility of SF, butyl glycidyl ether (BGE) was reacted with the side chain of SF to prepare a freely water-soluble SF (mSF) derivative, and the phase behavior according to the mixing ratio of SF derivative and tannic acid (TA) was observed. In addition, ZnO nanoparticles were added to the mSF-TA solution to form a hydrogel through the coordination bonding. The UV blocking, hemostatic, antibacterial and antioxidant effects of the mSF/TA/ZnO composite hydrogel were evaluated, and the excellent skin compatibility of multifunctional hydrogel sunscreen was confirmed through a skin irritation test.


CTCF controls three-dimensional enhancer network underlying the inflammatory response of bone marrow-derived dendritic cells.

  • Bobae Yang‎ et al.
  • Nature communications‎
  • 2023‎

Dendritic cells are antigen-presenting cells orchestrating innate and adaptive immunity. The crucial role of transcription factors and histone modifications in the transcriptional regulation of dendritic cells has been extensively studied. However, it is not been well understood whether and how three-dimensional chromatin folding controls gene expression in dendritic cells. Here we demonstrate that activation of bone marrow-derived dendritic cells induces extensive reprogramming of chromatin looping as well as enhancer activity, both of which are implicated in the dynamic changes in gene expression. Interestingly, depletion of CTCF attenuates GM-CSF-mediated JAK2/STAT5 signaling, resulting in defective NF-κB activation. Moreover, CTCF is necessary for establishing NF-κB-dependent chromatin interactions and maximal expression of pro-inflammatory cytokines, which prime Th1 and Th17 cell differentiation. Collectively, our study provides mechanistic insights into how three-dimensional enhancer networks control gene expression during bone marrow-derived dendritic cells activation, and offers an integrative view of the complex activities of CTCF in the inflammatory response of bone marrow-derived dendritic cells.


Effects of the Th2-dominant milieu on allergic responses in Der f 1-activated mouse basophils and mast cells.

  • Myung-Hee Yi‎ et al.
  • Scientific reports‎
  • 2018‎

Although basophils and mast cells share similar phenotypic and functional properties, little is known about the difference in the initial Th2 immune responses of these cells following exposure to proteolytic allergens. Here, we investigated the mechanisms of Th2-mediated immune responses in mouse bone marrow-derived basophils (BMBs) and mast cells (BMMCs) via stimulation with the cysteine protease allergen Der f 1. Our results showed that Th2 cytokines were induced from BMBs by active recombinant Der f 1 (rDer f 1 independently with Toll-like receptor (TLR) 2 and TLR4. Although both BMBs and BMMCs expressed protease-activated receptors on their surfaces, PAR expression following exposure to rDer f 1 was altered only in basophils. G protein-coupled receptors in basophils were found to be associated with interleukin (IL)-4 and IL-13 production from BMBs upon Der f 1 treatment. Secretion of Th2 cytokines from rDer f 1-treated basophils was mediated by G protein βγ and phosphatidylinositol 3-kinase γ through the extracellular signal-regulated kinase and c-Jun N-terminal kinase pathways. These findings provide insights into the roles of cysteine proteases in Th2 immune responses, such as allergic diseases, and improve our understanding of the mechanisms of Th2 cytokine production.


Bioorthogonal CRISPR/Cas9-Drug Conjugate: A Combinatorial Nanomedicine Platform.

  • Marcel Janis Beha‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Bioconjugation of proteins can substantially expand the opportunities in biopharmaceutical development, however, applications are limited for the gene editing machinery despite its tremendous therapeutic potential. Here, a self-delivered nanomedicine platform based on bioorthogonal CRISPR/Cas9 conjugates, which can be armed with a chemotherapeutic drug for combinatorial therapy is introduced. It is demonstrated that multi-functionalized Cas9 with a drug and polymer can form self-condensed nanocomplexes, and induce significant gene editing upon delivery while avoiding the use of a conventional carrier formulation. It is shown that the nanomedicine platform can be applied for combinatorial therapy by incorporating the anti-cancer drug olaparib and targeting the RAD52 gene, leading to significant anti-tumor effects in BRCA-mutant cancer. The current development provides a versatile nanomedicine platform for combination treatment of human diseases such as cancer.


In vivo genome editing using 244-cis LNPs and low-dose AAV achieves therapeutic threshold in hemophilia A mice.

  • Jeong Pil Han‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2023‎

Gene therapy and rebalancing therapy have emerged as promising approaches for treating hemophilia A, but there are limitations, such as temporary efficacy due to individual differences. Genome editing for hemophilia has shown long-term therapeutic potential in preclinical trials. However, a cautious approach is necessary because genome editing is irreversible. Therefore, we attempted to induce low-level human factor 8 (hF8) gene knockin (KI) using 244-cis lipid nanoparticles and low-dose adeno-associated virus to minimize side effects and achieve a therapeutic threshold in hemophilia A mice. We selected the serpin family C member 1, SerpinC1, locus as a target to enable a combined rebalancing strategy with hF8 KI to augment efficacy. This strategy improved blood coagulation activity and reduced hemophilic complications without adverse effects. Furthermore, hemophilic mice with genome editing exhibit enhanced survival for 40 weeks. Here, we demonstrate an effective, safe, and sustainable treatment for hemophilia A. This study provides valuable information to establish safe and long-term genome-editing-mediated treatment strategies for treating hemophilia and other protein-deficient genetic diseases.


Expression of the miR-302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes.

  • Chul Min Yang‎ et al.
  • International journal of cancer‎
  • 2015‎

Cellular transformation is initiated by the activation of oncogenes and a closely associated developmental reprogramming of the epigenetic landscape. Transcription factors, regulators of chromatin states and microRNAs influence cell fates in development and stabilize the phenotypes of normal, differentiated cells and of cancer cells. The miR-302/367 cluster, predominantly expressed in human embryonic stem cells (hESs), can promote the cellular reprogramming of human and mouse cells and contribute to the generation of iPSC. We have used the epigenetic reprogramming potential of the miR-302/367 cluster to "de-program" tumor cells, that is, hift their gene expression pattern towards an alternative program associated with more benign cellular phenotypes. Induction of the miR-302/367 cluster in extensively mutated U87MG glioblastoma cells drastically suppressed the expression of transformation related proteins, for example, the reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC, and the transcription factors POU3F2, SALL2 and OLIG2, required for the maintenance of glioblastoma stem-like tumor propagating cells. It also diminished PI3K/AKT and STAT3 signaling, impeded colony formation in soft agar and cell migration and suppressed pro-inflammatory cytokine secretion. At the same time, the miR-302/367 cluster restored the expression of neuronal markers of differentiation. Most notably, miR-302/367 cluster expressing cells lose their ability to form tumors and to establish liver metastasis in nude mice. The induction of the miR-302/367 cluster in U87MG glioblastoma cells suppresses the expression of multiple transformation related genes, abolishes the tumor and metastasis formation potential of these cells and can potentially become a new approach for cancer therapy.


Programmed cell death ligand 1 alleviates psoriatic inflammation by suppressing IL-17A production from programmed cell death 1-high T cells.

  • Jong Hoon Kim‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2016‎

Psoriasis is one of the most common chronic inflammatory diseases of the skin. Recently, IL-17-producing T cells have been shown to play a critical role in psoriatic inflammation. Programmed cell death 1 (PD-1) is a coinhibitory receptor expressed on T cells in various chronic inflammatory diseases; however, the expression and function of PD-1 during psoriatic inflammation have not previously been characterized.


Silk Fibroin/Tannin/ZnO Nanocomposite Hydrogel with Hemostatic Activities.

  • Chul Min Yang‎ et al.
  • Gels (Basel, Switzerland)‎
  • 2022‎

The inevitable bleeding and infections caused by disasters and accidents are the main causes of death owing to extrinsic trauma. Hemostatic agents are often used to quickly suppress bleeding and infection, and they can solve this problem in a short time. Silk fibroin (SF) has poor processibility in water, owing to incomplete solubility therein. In this study, aiming to overcome this disadvantage, a modified silk fibroin (SF-BGE), easily soluble in water, was prepared by introducing butyl glycidyl ether (BGE) into its side chain. Subsequently, a small amount of tannic acid (TA) was introduced to prepare an SF-BGE /TA solution, and ZnO nanoparticles (NPs) were added to the solution to form the coordination bonds between the ZnO and TA, leading to an SF-based nanocomposite hydrogel. A structural characterization of the SF-BGE, SF-BGE/TA, SF-BGE/TA/ZnO, and the coordination bonds between ZnO/TA was observed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the phase change was observed by rheological measurements. The pore formation of the SF-BGE/TA/ZnO hydrogel and dispersibility of ZnO were verified through energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The cytocompatible and hemostatic performances of the SF-BGE/TA/ZnO NPs composite hydrogels were evaluated, and the hydrogels showed superior hemostatic and cytocompatible activities. Therefore, the SF-based nanocomposite hydrogel is considered as a promising material for hemostasis.


Liver-Specific Deletion of Mouse CTCF Leads to Hepatic Steatosis via Augmented PPARγ Signaling.

  • Yeeun Choi‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

The liver is the major organ for metabolizing lipids, and malfunction of the liver leads to various diseases. Nonalcoholic fatty liver disease is rapidly becoming a major health concern worldwide and is characterized by abnormal retention of excess lipids in the liver. CCCTC-binding factor (CTCF) is a highly conserved zinc finger protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. Here, we sought to determine the physiological role of CTCF in hepatic lipid metabolism.


Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis.

  • Min-Ji Song‎ et al.
  • Scientific reports‎
  • 2017‎

Trichomonas vaginalis is an extracellular flagellated protozoan parasite that causes trichomoniasis, one of the most common non-viral sexually transmitted diseases. To survive and to maintain infection, T. vaginalis adapts to a hostile host environment by regulating gene expression. However, the mechanisms of transcriptional regulation are poorly understood for this parasite. Histone modification has a marked effect on chromatin structure and directs the recruitment of transcriptional machinery, thereby regulating essential cellular processes. In this study, we aimed to outline modes of chromatin-mediated gene regulation in T. vaginalis. Inhibition of histone deacetylase (HDAC) alters global transcriptional responses and induces hyperacetylation of histones and hypermethylation of H3K4. Analysis of the genome of T. vaginalis revealed that a number of enzymes regulate histone modification, suggesting that epigenetic mechanisms are important to controlling gene expression in this organism. Additionally, we describe the genome-wide localization of two histone H3 modifications (H3K4me3 and H3K27Ac), which we found to be positively associated with active gene expression in both steady and dynamic transcriptional states. These results provide the first direct evidence that histone modifications play an essential role in transcriptional regulation of T. vaginalis, and may help guide future epigenetic research into therapeutic intervention strategies against this parasite.


High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations.

  • Young Jung Jang‎ et al.
  • Toxicology‎
  • 2012‎

Bisphenol A (BPA) is used as a monomer during the manufacture of polycarbonate plastics and epoxy resins. However, BPA adversely affects reproductive organ growth and development, and it has been proposed that the detrimental effects of BPA could extend to future generations. The present study was conducted to evaluate the transgenerational effects of BPA on hippocampal neurogenesis and neurocognitive function. Pregnant female C57BL/6 mice (F0) were exposed to BPA (0.1-10 mg/kg) from gestation day 6 to 17, and female offspring (F2) from F1 generation mice were prepared. It was found that exposure of F0 mice to BPA at 10 mg/kg decreased the number of newly generated cells in the hippocampi of F2 female mice. Passive avoidance testing revealed that high-doses BPA (1 mg/kg and 10 mg/kg) decreased cross-over latency time in F2 mice, suggesting a BPA-mediated neurocognitive deficit in terms of memory retention. Furthermore, it was found that levels of phospho-ERK, brain-derived neurotrophic factor (BDNF), and phospho-CREB in hippocampi were significantly lower in F2 mice. Interestingly, the effects of BPA on hippocampal neurogenesis were found to be correlated with altered DNA methylation. In particular, high-dose BPA exposure increased DNA methylation of the CREB regulated transcription coactivator 1 (Crtc1) generated in F2 mice. These findings suggest that BPA exposure of pregnant mothers could adversely affect hippocampal neurogenesis and cognitive function in future generations by modulating the ERK and BDNF-CREB signaling cascades.


CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation.

  • Hyoung-Pyo Kim‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Regulatory T cells (T reg cells) are a population of CD4+ T cells that limit immune responses. FoxP3 is a master control transcription factor for development and function of these cells, but its regulation is poorly understood. We have identified a T cell receptor-responsive enhancer in the FoxP3 first intron that is dependent on a cyclic-AMP response element binding protein (CREB)/activating transcription factor (ATF) site overlapping a CpG island. Methylation of this island inversely correlates with CREB binding and FoxP3 expression. Interestingly, transforming growth factor-beta, which induces T reg cell formation, decreases methylation of the CpG island and increases FoxP3 expression. Similarly, inhibiting methylation with 5-azacytidine or knocking down the DNA methyltransferase Dnmt1 also induces FoxP3 expression. Conversely, methylation of the CpG island, which decreases CREB binding or expression of dominant-negative CREB, decreases FoxP3 gene expression. Thus, T cell receptor-induced FoxP3 expression in T reg cells is controlled both by sequence-specific binding of CREB/ATF and by DNA methylation of a CpG island.


Progressive fuzzy cation-π assembly of biological catecholamines.

  • Seonki Hong‎ et al.
  • Science advances‎
  • 2018‎

Biological functions depend on biomolecular assembly processes. Assemblies of lipid bilayers, actins, microtubules, or chromosomes are indispensable for cellular functions. These hierarchical assembly processes are reasonably predictable by understanding chemical structures of the defined building blocks and their interactions. However, biopigment assembly is rather fuzzy and unpredictable because a series of covalently coupled intermediates from catecholamine oxidation pathways progressively form a higher-level hierarchy. This study reports a different yet unexplored type of assembly process named "cation-π progressive assembly." We demonstrated for the first time that the cation-π is the primary mechanism for intermolecular assembly in dopamine-melanin biopigment. We also found that the self-assembled products physically grow and chemically gain new functions "progressively" over time in which cation-π plays important roles. The progressive assembly explains how biological systems produce wide spectra of pigment colors and broad wavelength absorption through energy-efficient processes. Furthermore, we also demonstrate surface-independent wettability control using cation-π progressive assembly.


Sniffer worm, C. elegans, as a toxicity evaluation model organism with sensing and locomotion abilities.

  • Jun Sung Kim‎ et al.
  • PloS one‎
  • 2023‎

Additive manufacturing, or 3D printing, has revolutionized the way we create objects. However, its layer-by-layer process may lead to an increased incidence of local defects compared to traditional casting-based methods. Factors such as light intensity, depth of light penetration, component inhomogeneity, and fluctuations in nozzle temperature all contribute to defect formations. These defective regions can become sources of toxic component leakage, but pinpointing their locations in 3D printed materials remains a challenge. Traditional toxicological assessments rely on the extraction and subsequent exposure of living organisms to these harmful agents, thus only offering a passive detection approach. Therefore, the development of an active system to both identify and locate sources of toxicity is essential in the realm of 3D printing technologies. Herein, we introduce the use of the nematode model organism, Caenorhabditis elegans (C. elegans), for toxicity evaluation. C. elegans exhibits distinctive 'sensing' and 'locomotion' capabilities that enable it to actively navigate toward safe zones while steering clear of hazardous areas. This active behavior sets C. elegans apart from other aquatic and animal models, making it an exceptional choice for immediate and precise identification and localization of toxicity sources in 3D printed materials.


p53 expression confers sensitivity to 5-fluorouracil via distinct chromatin accessibility dynamics in human colorectal cancer.

  • Chul Min Yang‎ et al.
  • Oncology letters‎
  • 2021‎

One of the most commonly used drugs in chemotherapy, 5-fluorouracil (5-FU) has been shown to be effective in only 10-15% of patients with colon cancer. Thus, studies of the mechanisms affecting 5-FU sensitivity in these patients are necessary. The tumor suppressor protein p53 is a transcription factor that serves important roles in cell apoptosis by regulating the cell cycle. It has also been characterized as a key factor influencing drug sensitivity. Furthermore, accessible chromatin is a hallmark of active DNA regulatory elements and functions as a crucial epigenetic factor regulating cancer mechanisms. The present study assessed the genetic regulatory landscape in colon cancer by performing RNA sequencing and Assay for Transposase-Accessible Chromatin sequencing, and investigated the effects of 5-FU on chromatin accessibility and gene expression. Notably, while treatment with 5-FU mediated global increases in chromatin accessibility, chromatin organization in several genomic regions differed depending on the expression status of p53. Since the occupancy of p53 does not overlap with accessible chromatin regions, the 5-FU-mediated changes in chromatin accessibility were not regulated by direct binding of p53. In the p53-expressing condition, the 5-FU-mediated accessible chromatin region was primarily associated with genes encoding cell death pathways. Additionally, 5-FU was revealed to induce open chromatin conformation at regions containing binding motifs for AP-1 family transcription factors, which may drive expression of apoptosis pathway genes. In conclusion, expression of p53 may confer 5-FU sensitivity by regulating chromatin accessibility of distinct genes associated with cell apoptosis in a transcription-independent manner.


Human induced pluripotent stem cell line YCMi007-A generated from a dilated cardiomyopathy patient with a heterozygous dominant c.613C > T (p. Arg205Trp) variant of the TNNT2 gene.

  • Sae-Bom Jeon‎ et al.
  • Stem cell research‎
  • 2023‎

Cardiac muscle troponin T protein binds to tropomyosin and regulates the calcium-dependent actin-myosin interaction on thin filaments in cardiomyocytes. Recent genetic studies have revealed that TNNT2 mutations are strongly linked to dilated cardiomyopathy (DCM). In this study, we generated YCMi007-A, a human induced pluripotent stem cell (hiPSC) line from a DCM patient with a p. Arg205Trp mutation in the TNNT2 gene. The YCMi007-A cells show high expression of pluripotent markers, normal karyotype, and differentiation into three germ layers. Thus, YCMi007-A-an established iPSC-could be useful for the investigation of DCM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: