Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Improvements on activated sludge settling and flocculation using biomass-based fly ash as activator.

  • Xiaoqian Chen‎ et al.
  • Scientific reports‎
  • 2019‎

Biomass-based fly ash and wastewater are undesired products of the pulping industry. Recently, the use of biomass-based fly ash as an adsorbent (i.e., a valued material) for constituents of wastewater effluents was reported. In this work, the settling performance and properties of activated sludge were studied in the presence of fly ash. Upon mixing, fly ash increased the zeta potential of the sludge from -31 mV to -28 mV, which was due to the release of cationic ions from fly ash in the sludge suspension. The sludge settling and its flocculation affinity were improved through the complexation of flocs and released cation ions from fly ash. The relationships between the protein/polysaccharide (PN/PS) ratio and the content of extracellular polymeric substances (EPS) as well as the ratio and the properties of the sludge flocs were determined. A correlation between the total loosely bound-EPS (LB-EPS) content and the effluent suspended solids (ESS) (Pearson's coefficient, rp = 0.83) was observed. The performance of sludge flocculation and settling were much more closely correlated with LB-EPS than with tightly bound EPS (TB-EPS). Scanning electron microscopy (SEM) analysis of sludge flocs before and after EPS extraction showed that the sludge flocs contained a large number of microorganisms, mainly Bacillus and Cocci. The amount of LB-EPS had an adverse influence on bioflocculation, effluent clarification and sludge settling affinity. The sludge properties had a moderate relationship with the PN/PS ratio of LB-EPS. Also, no correlation could be established between the ratio and the TB-EPS content.


Application of Ethanol Extracts From Alnus sibirica Fisch. ex Turcz in Hair Growth Promotion.

  • Eun Ju Ha‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2021‎

Alnus sibirica Fisch. ex Turcz (ASFT), belonging to the family of Betulaceae, grows naturally in Asia, Europe, and America. The aims of this study are determining the efficacy of various biomarkers related to hair loss, evaluated by extracting the branch with 60% alcohol, and purely separating diarylheptanoid oregonin, an indicator and active substance, from 60% alcohol extract of the tree. To determine the preventive effects on hair loss, we investigated the anti-oxidative and anti-apoptotic effects on hydrogen peroxide-induced cytotoxicity on human hair dermal papilla cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Western blotting analysis for proving of apoptosis-related marker alteration, respectively. Moreover, we examined the ameliorative effects of 60% alcohol extract of the tree and oregonin against changes of oxidative stress-induced cytokine and testosterone-induced dihydrotestosterone production as crucial pathways of the hair loss mechanism. These results suggest that 60% alcohol extract of the tree and oregonin were available as novel natural materials for maintaining hair health in mammals.


5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells.

  • Lei Wu‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E₂ (PGE₂), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.


"Nano-Ginseng" for Enhanced Cytotoxicity AGAINST Cancer Cells.

  • Lin Dai‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Panax ginseng has high medicinal and health values. However, the various and complex components of ginseng may interact with each other, thus reducing and even reversing therapeutic effects. In this study, we designed and fabricated a novel "nano-ginseng" with definite ingredients, ginsenoside Rb1/protopanaxadiol nanoparticles (Rb1/PPD NPs), completely based on the protopanaxadiol-type extracts. The optimized nano-formulations demonstrated an appropriate size (~110 nm), high drug loading efficiency (~96.8%) and capacity (~27.9 wt %), long half-time in systemic circulation (nine-fold longer than free PPD), better antitumor effects in vitro and in vivo, higher accumulation at the tumor site and reduced damage to normal tissues. Importantly, this process of "nano-ginseng" production is a simple, scalable, green economy process.


Alkylation modification for lignin color reduction and molecular weight adjustment.

  • Xiao Jiang‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

The application of industrial kraft lignin is limited by its low molecular weight, dark color, and low solubility. In this work, an efficient crosslinking reaction with N,N-Dimethylformamide (DMF) and 1,6-dibromohexane was proposed for adjusting the molecular weight and color of lignin. The chemical structure of alkylation lignin was systematically investigated by gel permeation chromatography (GPC), ultraviolet spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and 2D heteronuclear single quantum correlation nuclear magnetic resonance (HSQC NMR) spectra. After the alkylation modification, the molecular weights of the lignin were increased to 1643%. The resinol (β-β), β-aryl ether (β-O-4), and phenylcoumaran (β-5) linkages were still the main types of the linkages. The formation of β-β linkage would be inhibited at high temperatures. The color reduction of lignin can be attributed to the low content of chromophores and low packing density. This alkylation lignin will be a new and general approach for developing molecular weight-controlled and light-colored lignins, which can find more applications in cosmetics, packing, and other fields.


Senkyunolide H protects PC12 cells from OGD/R-induced injury via cAMP-PI3K/AKT signaling pathway.

  • Yunyao Jiang‎ et al.
  • Journal of ethnopharmacology‎
  • 2022‎

Senkyunolide H (SNH) is a bioactive phthalide isolated from Ligusticum chuanxiong Hort rhizome and was reported to have multiple pharmacological effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: