Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 243 papers

Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine.

  • Ping Yu‎ et al.
  • PloS one‎
  • 2016‎

The reprogramming of cellular memory in specific cell types, and in visceral adipocytes in particular, appears to be a fundamental aspect of obesity and its related negative health outcomes. We explored the hypothesis that adipose tissue contains epigenetically distinct subpopulations of adipocytes that are differentially potentiated to record cellular memories of their environment. Adipocytes are large, fragile, and technically difficult to efficiently isolate and fractionate. We developed fluorescence nuclear cytometry (FNC) and fluorescence activated nuclear sorting (FANS) of cellular nuclei from visceral adipose tissue (VAT) using the levels of the pan-adipocyte protein, peroxisome proliferator-activated receptor gamma-2 (PPARg2), to distinguish classes of PPARg2-Positive (PPARg2-Pos) adipocyte nuclei from PPARg2-Negative (PPARg2-Neg) leukocyte and endothelial cell nuclei. PPARg2-Pos nuclei were 10-fold enriched for most adipocyte marker transcripts relative to PPARg2-Neg nuclei. PPARg2-Pos nuclei showed 2- to 50-fold higher levels of transcripts encoding most of the chromatin-remodeling factors assayed, which regulate the methylation of histones and DNA cytosine (e.g., DNMT1, TET1, TET2, KDM4A, KMT2C, SETDB1, PAXIP1, ARID1A, JMJD6, CARM1, and PRMT5). PPARg2-Pos nuclei were large with decondensed chromatin. TAB-seq demonstrated 5-hydroxymethylcytosine (5hmC) levels were remarkably dynamic in gene bodies of various classes of VAT nuclei, dropping 3.8-fold from the highest quintile of expressed genes to the lowest. In short, VAT-derived adipocytes appear to be more actively remodeling their chromatin than non-adipocytes.


A Highly Sensitive and Robust Method for Genome-wide 5hmC Profiling of Rare Cell Populations.

  • Dali Han‎ et al.
  • Molecular cell‎
  • 2016‎

We present a highly sensitive and selective chemical labeling and capture approach for genome-wide profiling of 5-hydroxylmethylcytosine (5hmC) using DNA isolated from ∼1,000 cells (nano-hmC-Seal). Using this technology, we assessed 5hmC occupancy and dynamics across different stages of hematopoietic differentiation. Nano-hmC-Seal profiling of purified Tet2-mutant acute myeloid leukemia (AML) murine stem cells allowed us to identify leukemia-specific, differentially hydroxymethylated regions that harbor known and candidate disease-specific target genes with differential 5hmC peaks compared to normal stem cells. The change of 5hmC patterns in AML strongly correlates with differential gene expression, demonstrating the importance of dynamic alterations of 5hmC in regulating transcription in AML. Together, covalent 5hmC labeling offers an effective approach to study and detect DNA methylation dynamics in in vivo disease models and in limited clinical samples.


miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia.

  • Xi Jiang‎ et al.
  • Nature communications‎
  • 2016‎

MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.


Unique features of the m6A methylome in Arabidopsis thaliana.

  • Guan-Zheng Luo‎ et al.
  • Nature communications‎
  • 2014‎

Recent discoveries of reversible N(6)-methyladenosine (m(6)A) methylation on messenger RNA (mRNA) and mapping of m(6)A methylomes in mammals and yeast have revealed potential regulatory functions of this RNA modification. In plants, defects in m(6)A methyltransferase cause an embryo-lethal phenotype, suggesting a critical role of m(6)A in plant development. Here, we profile m(6)A transcriptome-wide in two accessions of Arabidopsis thaliana and reveal that m(6)A is a highly conserved modification of mRNA in plants. Distinct from mammals, m(6)A in A. thaliana is enriched not only around the stop codon and within 3'-untranslated regions, but also around the start codon. Gene ontology analysis indicates that the unique distribution pattern of m(6)A in A. thaliana is associated with plant-specific pathways involving the chloroplast. We also discover a positive correlation between m(6)A deposition and mRNA abundance, suggesting a regulatory role of m(6)A in plant gene expression.


TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator.

  • Ya-Ping Tsai‎ et al.
  • Genome biology‎
  • 2014‎

Hypoxia induces the epithelial-mesenchymal transition, EMT, to promote cancer metastasis. In addition to transcriptional regulation mediated by hypoxia-inducible factors, HIFs, other epigenetic mechanisms of gene regulation, such as histone modifications and DNA methylation, are utilized under hypoxia. However, whether DNA demethylation mediated by TET1, a DNA dioxygenase converting 5-methylcytosine, 5mC, into 5-hydroxymethylcytosine, 5hmC, plays a role in hypoxia-induced EMT is largely unknown.


Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm.

  • Jiangbo Wei‎ et al.
  • Molecular cell‎
  • 2018‎

FTO, the first RNA demethylase discovered, mediates the demethylation of internal N6-methyladenosine (m6A) and N6, 2-O-dimethyladenosine (m6Am) at the +1 position from the 5' cap in mRNA. Here we demonstrate that the cellular distribution of FTO is distinct among different cell lines, affecting the access of FTO to different RNA substrates. We find that FTO binds multiple RNA species, including mRNA, snRNA, and tRNA, and can demethylate internal m6A and cap m6Am in mRNA, internal m6A in U6 RNA, internal and cap m6Am in snRNAs, and N1-methyladenosine (m1A) in tRNA. FTO-mediated demethylation has a greater effect on the transcript levels of mRNAs possessing internal m6A than the ones with cap m6Am in the tested cells. We also show that FTO can directly repress translation by catalyzing m1A tRNA demethylation. Collectively, FTO-mediated RNA demethylation occurs to m6A and m6Am in mRNA and snRNA as well as m1A in tRNA.


Antiproliferative and Apoptosis Triggering Potential of Paclitaxel-Based Targeted-Lipid Nanoparticles with Enhanced Cellular Internalization by Transferrin Receptors-a Study in Leukemia Cells.

  • Yang Dai‎ et al.
  • Nanoscale research letters‎
  • 2018‎

Leukemia is a typical blood cancer that is characterized by the numerous duplication and proliferation of white blood cells. The main aim of this study was to develop PTX-loaded multifunctional nanoparticles and target to leukemia cells. In this study, transferrin-decorated paclitaxel-loaded lipid nanoparticle (TPLN) was prepared with an aim to increase the chemotherapeutic efficacy in the leukemia cells. Results clearly showed the superior targeting potential of TPLN to the HL-60 cancer cells compared to that of the paclitaxel-loaded nanoparticles (PLN). To be specific, TPLN showed a significantly higher cytotoxic effect in the cancer cells compared to that of the PLN indicating the superior targeting efficiency of the Tf-decorated nanoparticle system. The IC50 value of TPLN was 0.45 μg/ml compared to 2.8 μg/ml for PLN. TPLN induced a most remarkable apoptosis of the cancer cells and much of the cells were distorted with huge presence of the apoptotic body formation. Importantly, TPLN showed a remarkable reduction in the viable cells proportion to ~ 65% with around ~ 30% apoptosis cells (early and late apoptosis). Overall, results clearly showed the targeting potential of ligand-conjugated lipid nanoparticle system to the leukemia cells that might pave the way for the successful cancer treatment.


Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing.

  • Shijia Zhu‎ et al.
  • Genome research‎
  • 2018‎

N6-Methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes; however, methods for high-resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single-nucleotide and single-molecule resolution. For human lymphoblastoid cells (hLCLs), it was necessary to integrate SMRT sequencing data with independent sequencing data. The joint analyses suggest putative m6dA events are enriched in the promoters of young full-length LINE-1 elements (L1s), but call for validation by additional methods. These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes.


RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia.

  • Jason X Cheng‎ et al.
  • Nature communications‎
  • 2018‎

The roles of RNA 5-methylcytosine (RNA:m5C) and RNA:m5C methyltransferases (RCMTs) in lineage-associated chromatin organization and drug response/resistance are unclear. Here we demonstrate that the RCMTs, namely NSUN3 and DNMT2, directly bind hnRNPK, a conserved RNA-binding protein. hnRNPK interacts with the lineage-determining transcription factors (TFs), GATA1 and SPI1/PU.1, and with CDK9/P-TEFb to recruit RNA-polymerase-II at nascent RNA, leading to formation of 5-Azacitidine (5-AZA)-sensitive chromatin structure. In contrast, NSUN1 binds BRD4 and RNA-polymerase-II to form an active chromatin structure that is insensitive to 5-AZA, but hypersensitive to the BRD4 inhibitor JQ1 and to the downregulation of NSUN1 by siRNAs. Both 5-AZA-resistant leukaemia cell lines and clinically 5-AZA-resistant myelodysplastic syndrome and acute myeloid leukaemia specimens have a significant increase in RNA:m5C and NSUN1-/BRD4-associated active chromatin. This study reveals novel RNA:m5C/RCMT-mediated chromatin structures that modulate 5-AZA response/resistance in leukaemia cells, and hence provides a new insight into treatment of leukaemia.


Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal.

  • Jing Wen‎ et al.
  • Molecular cell‎
  • 2018‎

N6-methyladenosine (m6A) is an abundant modification in eukaryotic mRNA, regulating mRNA dynamics by influencing mRNA stability, splicing, export, and translation. However, the precise m6A regulating machinery still remains incompletely understood. Here we demonstrate that ZC3H13, a zinc-finger protein, plays an important role in modulating RNA m6A methylation in the nucleus. We show that knockdown of Zc3h13 in mouse embryonic stem cell significantly decreases global m6A level on mRNA. Upon Zc3h13 knockdown, a great majority of WTAP, Virilizer, and Hakai translocate to the cytoplasm, suggesting that Zc3h13 is required for nuclear localization of the Zc3h13-WTAP-Virilizer-Hakai complex, which is important for RNA m6A methylation. Finally, Zc3h13 depletion, as does WTAP, Virilizer, or Hakai, impairs self-renewal and triggers mESC differentiation. Taken together, our findings demonstrate that Zc3h13 plays a critical role in anchoring WTAP, Virilizer, and Hakai in the nucleus to facilitate m6A methylation and to regulate mESC self-renewal.


Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning.

  • Jessica L Koranda‎ et al.
  • Neuron‎
  • 2018‎

N6-methyladenosine (m6A) regulates mRNA metabolism and translation, serving as an important source of post-transcriptional regulation. To date, the functional consequences of m6A deficiency within the adult brain have not been determined. To achieve m6A deficiency, we deleted Mettl14, an essential component of the m6A methyltransferase complex, in two related yet discrete mouse neuronal populations: striatonigral and striatopallidal. Mettl14 deletion reduced striatal m6A levels without altering cell numbers or morphology. Transcriptome-wide profiling of m6A-modified mRNAs in Mettl14-deleted striatum revealed downregulation of similar striatal mRNAs encoding neuron- and synapse-specific proteins in both neuronal types, but striatonigral and striatopallidal identity genes were uniquely downregulated in each respective manipulation. Upregulated mRNA species encoded non-neuron-specific proteins. These changes increased neuronal excitability, reduced spike frequency adaptation, and profoundly impaired striatal-mediated behaviors. Using viral-mediated, neuron-specific striatal Mettl14 deletion in adult mice, we further confirmed the significance of m6A in maintaining normal striatal function in the adult mouse.


N6-methyladenosine-dependent regulation of messenger RNA stability.

  • Xiao Wang‎ et al.
  • Nature‎
  • 2014‎

N(6)-methyladenosine (m(6)A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m(6)A modification remains to be determined. The recent discovery of two m(6)A demethylases in mammalian cells highlighted the importance of m(6)A in basic biological functions and disease. Here we show that m(6)A is selectively recognized by the human YTH domain family 2 (YTHDF2) 'reader' protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m(6)A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m(6)A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m(6)A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.


Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA.

  • Nian Liu‎ et al.
  • RNA (New York, N.Y.)‎
  • 2013‎

N(6)-methyladenosine (m(6)A) is the most abundant modification in mammalian mRNA and long noncoding RNA (lncRNA). Recent discoveries of two m(6)A demethylases and cell-type and cell-state-dependent m(6)A patterns indicate that m(6)A modifications are highly dynamic and likely play important biological roles for RNA akin to DNA methylation or histone modification. Proposed functions for m(6)A modification include mRNA splicing, export, stability, and immune tolerance; but m(6)A studies have been hindered by the lack of methods for its identification at single nucleotide resolution. Here, we develop a method that accurately determines m(6)A status at any site in mRNA/lncRNA, termed site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET). The method determines the precise location of the m(6)A residue and its modification fraction, which are crucial parameters in probing the cellular dynamics of m(6)A modification. We applied the method to determine the m(6)A status at several sites in two human lncRNAs and three human mRNAs and found that m(6)A fraction varies between 6% and 80% among these sites. We also found that many m(6)A candidate sites in these RNAs are however not modified. The precise determination of m(6)A status in a long noncoding RNA also enables the identification of an m(6)A-containing RNA structural motif.


Dynamics of Human and Viral RNA Methylation during Zika Virus Infection.

  • Gianluigi Lichinchi‎ et al.
  • Cell host & microbe‎
  • 2016‎

Infection with the flavivirus Zika (ZIKV) causes neurological, immunological, and developmental defects through incompletely understood mechanisms. We report that ZIKV infection affects viral and human RNAs by altering the topology and function of N6-adenosine methylation (m6A), a modification affecting RNA structure and function. m6A nucleosides are abundant in ZIKV RNA, with twelve m6A peaks identified across full-length ZIKV RNA. m6A in ZIKV RNA is controlled by host methyltransferases METTL3 and METTL14 and demethylases ALKBH5 and FTO, and knockdown of methyltransferases increases, while silencing demethylases decreases, ZIKV production. YTHDF family proteins, which regulate the stability of m6A-modified RNA, bind to ZIKV RNA, and their silencing increases ZIKV replication. Profiling of the m6A methylome of host mRNAs reveals that ZIKV infection alters m6A location in mRNAs, methylation motifs, and target genes modified by methyltransferases. Our results identify a mechanism by which ZIKV interacts with and alters host cell functions.


Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation.

  • Ki-Jun Yoon‎ et al.
  • Cell‎
  • 2017‎

N6-methyladenosine (m6A), installed by the Mettl3/Mettl14 methyltransferase complex, is the most prevalent internal mRNA modification. Whether m6A regulates mammalian brain development is unknown. Here, we show that m6A depletion by Mettl14 knockout in embryonic mouse brains prolongs the cell cycle of radial glia cells and extends cortical neurogenesis into postnatal stages. m6A depletion by Mettl3 knockdown also leads to a prolonged cell cycle and maintenance of radial glia cells. m6A sequencing of embryonic mouse cortex reveals enrichment of mRNAs related to transcription factors, neurogenesis, the cell cycle, and neuronal differentiation, and m6A tagging promotes their decay. Further analysis uncovers previously unappreciated transcriptional prepatterning in cortical neural stem cells. m6A signaling also regulates human cortical neurogenesis in forebrain organoids. Comparison of m6A-mRNA landscapes between mouse and human cortical neurogenesis reveals enrichment of human-specific m6A tagging of transcripts related to brain-disorder risk genes. Our study identifies an epitranscriptomic mechanism in heightened transcriptional coordination during mammalian cortical neurogenesis.


Double-stranded RNA released from damaged articular chondrocytes promotes cartilage degeneration via Toll-like receptor 3-interleukin-33 pathway.

  • Changwei Li‎ et al.
  • Cell death & disease‎
  • 2017‎

Pattern recognition receptors (PRRs), including Toll-like receptor 3 (TLR3), are involved in arthritic responses; however, whether interleukin-33 (IL-33) is involved in TLR3-mediated cartilage degeneration is unknown. Here, we found that IL-33 was abundantly increased in chondrocytes of osteoarthritis, especially the chondrocytes of weight-bearing cartilage. Furthermore, double-stranded RNA (dsRNA) released from damaged articular chondrocytes induced by mechanical stretching upregulated IL-33 expression to a greater degree than IL-1β and tumor necrosis factor-α. dsRNA induced IL-33 expression via the TLR3-p38 mitogen-activated protein kinase-nuclear factor-κB (NF-κB) pathway. In addition, formation of the p65 and peroxisome proliferator-activated receptor-γ transcriptional complex was required for dsRNA-induced IL-33 expression. IL-33, in turn, acted on chondrocytes to induce matrix metalloproteinase-1/13 and inhibit type II collagen expression. These findings reveal that dsRNA released from damaged articular chondrocytes promotes cartilage degeneration via the TLR3-IL-33 pathway.


Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells.

  • Keith E Szulwach‎ et al.
  • PLoS genetics‎
  • 2011‎

Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC.


A novel intravital method to evaluate cerebral vasospasm in rat models of subarachnoid hemorrhage: a study with synchrotron radiation angiography.

  • Jun Cai‎ et al.
  • PloS one‎
  • 2012‎

Precise in vivo evaluation of cerebral vasospasm caused by subarachnoid hemorrhage has remained a critical but unsolved issue in experimental small animal models. In this study, we used synchrotron radiation angiography to study the vasospasm of anterior circulation arteries in two subarachnoid hemorrhage models in rats. Synchrotron radiation angiography, laser Doppler flowmetry-cerebral blood flow measurement, [(125)I]N-isopropyl-p-iodoamphetamine cerebral blood flow measurement and terminal examinations were applied to evaluate the changes of anterior circulation arteries in two subarachnoid hemorrhage models made by blood injection into cisterna magna and prechiasmatic cistern. Using synchrotron radiation angiography technique, we detected cerebral vasospasm in subarachnoid hemorrhage rats compared to the controls (p<0.05). We also identified two interesting findings: 1) both middle cerebral artery and anterior cerebral artery shrunk the most at day 3 after subarachnoid hemorrhage; 2) the diameter of anterior cerebral artery in the prechiasmatic cistern injection group was smaller than that in the cisterna magna injection group (p<0.05), but not for middle cerebral artery. We concluded that synchrotron radiation angiography provided a novel technique, which could directly evaluate cerebral vasospasm in small animal experimental subarachnoid hemorrhage models. The courses of vasospasm in these two injection models are similar; however, the model produced by prechiasmatic cistern injection is more suitable for study of anterior circulation vasospasm.


Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked protein-DNA system.

  • Lianghua Lu‎ et al.
  • Nucleic acids research‎
  • 2010‎

N(1)-meA and N(3)-meC are cytotoxic DNA base methylation lesions that can accumulate in the genomes of various organisms in the presence of S(N)2 type methylating agents. We report here the structural characterization of these base lesions in duplex DNA using a cross-linked protein-DNA crystallization system. The crystal structure of N(1)-meA:T pair shows an unambiguous Hoogsteen base pair with a syn conformation adopted by N(1)-meA, which exhibits significant changes in the opening, roll and twist angles as compared to the normal A:T base pair. Unlike N(1)-meA, N(3)-meC does not establish any interaction with the opposite G, but remains partially intrahelical. Also, structurally characterized is the N(6)-meA base modification that forms a normal base pair with the opposite T in duplex DNA. Structural characterization of these base methylation modifications provides molecular level information on how they affect the overall structure of duplex DNA. In addition, the base pairs containing N(1)-meA or N(3)-meC do not share any specific characteristic properties except that both lesions create thermodynamically unstable regions in a duplex DNA, a property that may be explored by the repair proteins to locate these lesions.


RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide.

  • Bin Lu‎ et al.
  • Cancer letters‎
  • 2018‎

RIP1 and RIP3 are necroptosis initiators, but their roles in regulation of glycolysis remain elusive. In this study, we found shikonin activated RIP1 and RIP3 in glioma cells in vitro and in vivo, which was accompanied with glycolysis suppression. Further investigation revealed that shikonin-induced decreases of glucose-6-phosphate and pyruvate and downregulation of HK II and PKM2 were significantly prevented when RIP1 or RIP3 was pharmacologically inhibited or genetically knocked down with SiRNA. Moreover, shikonin also triggered accumulation of intracellular H2O2 and depletion of GSH and cysteine. Mitigation of intracellular H2O2 via supplement of GSH reversed shikonin-induced glycolysis suppression. The role of intracellular H2O2 in regulation of glycolysis suppression was further confirmed in the cells treated with exogenous H2O2. Notably, inhibition of RIP1 or RIP3 prevented intracellular H2O2 accumulation, which was correlated with preventing shikonin-induced downregulation of x-CT and depletion of GSH and cysteine. In addition, supplement of pyruvate effectively inhibited shikonin- or exogenous H2O2-induced accumulation of intracellular H2O2 and glioma cell death. Taken together, we demonstrated in this study that RIP1 and RIP3 contributed to shikonin-induced glycolysis suppression via increasing intracellular H2O2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: