Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,705 papers

RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack.

  • Jun Liu‎ et al.
  • PLoS biology‎
  • 2009‎

Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H(+)-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H(+)-ATPase activity. PM H(+)-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H(+)-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H(+)-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.


CD36 deficiency attenuates experimental mycobacterial infection.

  • Michael Hawkes‎ et al.
  • BMC infectious diseases‎
  • 2010‎

Members of the CD36 scavenger receptor family have been implicated as sensors of microbial products that mediate phagocytosis and inflammation in response to a broad range of pathogens. We investigated the role of CD36 in host response to mycobacterial infection.


Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation.

  • Wenqing Shui‎ et al.
  • Journal of proteome research‎
  • 2011‎

The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.


Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked protein-DNA system.

  • Lianghua Lu‎ et al.
  • Nucleic acids research‎
  • 2010‎

N(1)-meA and N(3)-meC are cytotoxic DNA base methylation lesions that can accumulate in the genomes of various organisms in the presence of S(N)2 type methylating agents. We report here the structural characterization of these base lesions in duplex DNA using a cross-linked protein-DNA crystallization system. The crystal structure of N(1)-meA:T pair shows an unambiguous Hoogsteen base pair with a syn conformation adopted by N(1)-meA, which exhibits significant changes in the opening, roll and twist angles as compared to the normal A:T base pair. Unlike N(1)-meA, N(3)-meC does not establish any interaction with the opposite G, but remains partially intrahelical. Also, structurally characterized is the N(6)-meA base modification that forms a normal base pair with the opposite T in duplex DNA. Structural characterization of these base methylation modifications provides molecular level information on how they affect the overall structure of duplex DNA. In addition, the base pairs containing N(1)-meA or N(3)-meC do not share any specific characteristic properties except that both lesions create thermodynamically unstable regions in a duplex DNA, a property that may be explored by the repair proteins to locate these lesions.


LILRA3 binds both classical and non-classical HLA class I molecules but with reduced affinities compared to LILRB1/LILRB2: structural evidence.

  • Myongchol Ryu‎ et al.
  • PloS one‎
  • 2011‎

Structurally, Group 1 LILR (Leukocyte Immunoglobulin (Ig)-Like Receptor, also known as Ig-like transcripts, ILT; Leukocyte Ig-like receptor, LIR; and CD85) members are very similar in terms of the HLAIs (human leukocyte antigen class I molecules) binding region and were hypothesized that they all bind to HLAIs. As one of the Group 1 LILRs, LILRA3 is the only secretory LILR and may greatly control the inhibitory immune response induced by LILRB1, LILRB2, and other HLA-binding LILR molecules like LILRA1. Nevertheless, little was known about the binding of LILRA3 to HLAIs. In this report, we present the crystal structure of the LILRA3 domain 1 (D1) and evaluate the D1 and D1D2 (domain 1 and domain 2) binding to classical and non-classical HLAIs using BIAcore® surface plasmon resonance analysis (SPR). We found that LILRA3 binds both classical HLA-A*0201 and non-classical HLA-G1 but with reduced affinities compared to either LILRB1 or LILRB2. The polymorphic amino acids and the LILRA3 D1 structure support this notion.


Systematic genetic nomenclature for type VII secretion systems.

  • Wilbert Bitter‎ et al.
  • PLoS pathogens‎
  • 2009‎

No abstract available


An oestrogen-receptor-alpha-bound human chromatin interactome.

  • Melissa J Fullwood‎ et al.
  • Nature‎
  • 2009‎

Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor alpha (ER-alpha) in the human genome. We found that most high-confidence remote ER-alpha-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-alpha functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.


Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells.

  • Keith E Szulwach‎ et al.
  • PLoS genetics‎
  • 2011‎

Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC.


Increased cognition connectivity network in major depression disorder: a FMRI study.

  • Ting Shen‎ et al.
  • Psychiatry investigation‎
  • 2015‎

Evidence of the brain network involved in cognitive dysfunction has been inconsistent for major depressive disorder (MDD), especially during early stage of MDD. This study seeks to examine abnormal cognition connectivity network (CCN) in MDD within the whole brain.


Let-7 miRNAs Modulate the Activation of NF-κB by Targeting TNFAIP3 and Are Involved in the Pathogenesis of Lupus Nephritis.

  • Jun Liu‎ et al.
  • PloS one‎
  • 2015‎

TNFAIP3 is a ubiquitin-editing enzyme that negatively regulates multiple NF-κB signaling pathways and dysregulation of TNFAIP3 is related to systemic lupus erythematosus (SLE). Although there exists evidence indicating that microRNAs (miRNAs) modulate the expression of TNFAIP3, whether and how miRNAs regulate TNFAIP3 and contribute to lupus nephritis (LN) is still not well understood. In this study, we screened eleven selected miRNAs that potentially regulated TNFAIP3 expression by dual luciferase assay and found that Let-7 miRNAs repressed TNFAIP3 expression by targeting the 3'UTR of TNFAIP3 mRNA. Overexpression of Let-7 miRNAs led to increased phosphorylation and sustained degradation of IκBα and enhanced phosphorylation of p65 following TNFα stimulation and promoted SeV-induced production of cytokines in HEK293T cells. In addition, the expression of Let-7 miRNAs was significantly up-regulated, and TNFAIP3 level was remarkably down-regulated in samples from LN patients compared control samples. Our findings have uncovered Let-7-TNFAIP3-NF-κB pathway that is involved in LN and thus provided a potential target for therapeutic intervention.


A non-opioid pathway for dynorphin-caused spinal cord injury in rats.

  • Yu Chen‎ et al.
  • Neural regeneration research‎
  • 2012‎

Intrathecal injection of dynorphin into rats via subarachnoid catheter induces damage to spinal cord tissue and motor function. Injection of the kappa opioid receptor antagonist nor-binaltorphine, or the excitatory amino acid N-methyl-D-aspartate receptor antagonist MK-801 into rats alleviated the pathological changes of dynorphin-caused spinal cord tissue injury and reduced the acid phosphatase activity in the spinal cord. The experimental findings indicate that there are opioid and non-opioid pathways for dynorphin-induced spinal cord injury, and that the non-opioid receptor pathway may be mediated by the excitatory amino acid N-methyl-D-aspartate receptor.


Convergence and divergence of genetic and modular networks between diabetes and breast cancer.

  • Xiaoxu Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Diabetes mellitus (DM) and breast cancer (BC) can simultaneously occur in the same patient populations, but the molecular relationship between them remains unknown. In this study, we constructed genetic networks and used modularized analysis approaches to investigate the multi-dimensional characteristics of two diseases and one disease subtype. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to validate potential subnetworks and to divide the modules, respectively. A total of 793 DM-related genes, 386 type 2 diabetes (T2DM) genes and 873 BC-related genes were identified from the Online Mendelian Inheritance in Man database. For DM and BC, a total of 99 overlapping genes, 9 modules, 29 biological processes and 7 pathways were identified. Meanwhile, for T2DM and BC, 56 overlapping genes, 5 modules, 20 biological processes and 12 pathways were identified. Based on the Gene Ontology functional enrichment analysis of the top 10 non-overlapping modules of the two diseases, 10 biological functions and 5 pathways overlapped between them. The glycosphingolipid and lysosome pathways verified molecular mechanisms of cell death related to both DM and BC. We also identified new biological functions of dopamine receptors and four signalling pathways (Parkinson's disease, Alzheimer's disease, Huntington's disease and long-term depression) related to both diseases; these warrant further investigation. Our results illustrate the landscape of the novel molecular substructures between DM and BC, which may support a new model for complex disease classification and rational therapies for multiple diseases.


Unique features of the m6A methylome in Arabidopsis thaliana.

  • Guan-Zheng Luo‎ et al.
  • Nature communications‎
  • 2014‎

Recent discoveries of reversible N(6)-methyladenosine (m(6)A) methylation on messenger RNA (mRNA) and mapping of m(6)A methylomes in mammals and yeast have revealed potential regulatory functions of this RNA modification. In plants, defects in m(6)A methyltransferase cause an embryo-lethal phenotype, suggesting a critical role of m(6)A in plant development. Here, we profile m(6)A transcriptome-wide in two accessions of Arabidopsis thaliana and reveal that m(6)A is a highly conserved modification of mRNA in plants. Distinct from mammals, m(6)A in A. thaliana is enriched not only around the stop codon and within 3'-untranslated regions, but also around the start codon. Gene ontology analysis indicates that the unique distribution pattern of m(6)A in A. thaliana is associated with plant-specific pathways involving the chloroplast. We also discover a positive correlation between m(6)A deposition and mRNA abundance, suggesting a regulatory role of m(6)A in plant gene expression.


Surface vulnerability of cerebral cortex to major depressive disorder.

  • Daihui Peng‎ et al.
  • PloS one‎
  • 2015‎

Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process.


Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats.

  • Shu-Quan Zhang‎ et al.
  • Neural regeneration research‎
  • 2015‎

Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.


Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage.

  • Hardik Doshi‎ et al.
  • PloS one‎
  • 2015‎

Mild traumatic brain injury (mTBI) is a significant public health care burden in the United States. However, we lack a detailed understanding of the pathophysiology following mTBI and its relation to symptoms and recovery. With advanced magnetic resonance imaging (MRI), we can investigate brain perfusion and oxygenation in regions known to be implicated in symptoms, including cortical gray matter and subcortical structures. In this study, we assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and mapping (SWIM) for blood oxygenation quantification. In addition to SWIM, 7 patients and 12 controls had cerebral perfusion measured with arterial spin labeling (ASL). We found increases in regional cerebral blood flow (CBF) in the left striatum, and in frontal and occipital lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively). We also found decreases in venous susceptibility, indicating increases in venous oxygenation, in the left thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both). mTBI patients had significantly lower delayed recall scores on the standardized assessment of concussion, but neither susceptibility nor CBF measures were found to correlate with symptoms as assessed by neuropsychological testing. The increased CBF combined with increased venous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may represent a neuroprotective response following mTBI, which warrants further investigation.


TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator.

  • Ya-Ping Tsai‎ et al.
  • Genome biology‎
  • 2014‎

Hypoxia induces the epithelial-mesenchymal transition, EMT, to promote cancer metastasis. In addition to transcriptional regulation mediated by hypoxia-inducible factors, HIFs, other epigenetic mechanisms of gene regulation, such as histone modifications and DNA methylation, are utilized under hypoxia. However, whether DNA demethylation mediated by TET1, a DNA dioxygenase converting 5-methylcytosine, 5mC, into 5-hydroxymethylcytosine, 5hmC, plays a role in hypoxia-induced EMT is largely unknown.


Proprotein convertase subtilisin/kexin type 9 expression is transiently up-regulated in the acute period of myocardial infarction in rat.

  • Yan Zhang‎ et al.
  • BMC cardiovascular disorders‎
  • 2014‎

The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been confirmed as a major factor regulating cholesterol homeostasis and has low-density lipoprotein receptor (LDLR) independent effects. In addition, the pathogenesis of acute myocardial infarction (AMI) involves lipids alteration and other acute phase responses. It remains unknown whether the PCSK9 expression is influenced by the impact of AMI. The present study aimed to investigate the changes of PCSK9 concentration using AMI rat model.


Meta analysis of olfactory ensheathing cell transplantation promoting functional recovery of motor nerves in rats with complete spinal cord transection.

  • Jun Liu‎ et al.
  • Neural regeneration research‎
  • 2014‎

To evaluate the effects of olfactory ensheathing cell transplantation on functional recovery of rats with complete spinal cord transection.


Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA.

  • Nian Liu‎ et al.
  • RNA (New York, N.Y.)‎
  • 2013‎

N(6)-methyladenosine (m(6)A) is the most abundant modification in mammalian mRNA and long noncoding RNA (lncRNA). Recent discoveries of two m(6)A demethylases and cell-type and cell-state-dependent m(6)A patterns indicate that m(6)A modifications are highly dynamic and likely play important biological roles for RNA akin to DNA methylation or histone modification. Proposed functions for m(6)A modification include mRNA splicing, export, stability, and immune tolerance; but m(6)A studies have been hindered by the lack of methods for its identification at single nucleotide resolution. Here, we develop a method that accurately determines m(6)A status at any site in mRNA/lncRNA, termed site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET). The method determines the precise location of the m(6)A residue and its modification fraction, which are crucial parameters in probing the cellular dynamics of m(6)A modification. We applied the method to determine the m(6)A status at several sites in two human lncRNAs and three human mRNAs and found that m(6)A fraction varies between 6% and 80% among these sites. We also found that many m(6)A candidate sites in these RNAs are however not modified. The precise determination of m(6)A status in a long noncoding RNA also enables the identification of an m(6)A-containing RNA structural motif.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: