Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Efficient and quantitative high-throughput tRNA sequencing.

  • Guanqun Zheng‎ et al.
  • Nature methods‎
  • 2015‎

Despite its biological importance, tRNA has not been adequately sequenced by standard methods because of its abundant post-transcriptional modifications and stable structure, which interfere with cDNA synthesis. We achieved efficient and quantitative tRNA sequencing in HEK293T cells by using engineered demethylases to remove base methylations and a highly processive thermostable group II intron reverse transcriptase to overcome these obstacles. Our method, DM-tRNA-seq, should be applicable to investigations of tRNA in all organisms.


Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ.

  • Tong Wu‎ et al.
  • Nature methods‎
  • 2020‎

Transcription is a highly dynamic process that generates single-stranded DNA (ssDNA) in the genome as 'transcription bubbles'. Here we describe a kethoxal-assisted single-stranded DNA sequencing (KAS-seq) approach, based on the fast and specific reaction between N3-kethoxal and guanines in ssDNA. KAS-seq allows rapid (within 5 min), sensitive and genome-wide capture and mapping of ssDNA produced by transcriptionally active RNA polymerases or other processes in situ using as few as 1,000 cells. KAS-seq enables definition of a group of enhancers that are single-stranded and enrich unique sequence motifs. These enhancers are associated with specific transcription-factor binding and exhibit more enhancer-promoter interactions than typical enhancers do. Under conditions that inhibit protein condensation, KAS-seq uncovers a rapid release of RNA polymerase II (Pol II) from a group of promoters. KAS-seq thus facilitates fast and accurate analysis of transcription dynamics and enhancer activities simultaneously in both low-input and high-throughput manner.


Profiling of RNA-binding protein binding sites by in situ reverse transcription-based sequencing.

  • Yu Xiao‎ et al.
  • Nature methods‎
  • 2024‎

RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and immunoprecipitation, allowing for efficient and specific identification of RBP binding sites from as few as 20 cells or a tissue section. Taking advantage of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic RNA binding by RBPs over a short period of time, as demonstrated by the profiling of dynamic RNA binding of G3BP1 during stress granule assembly on a timescale as short as 10 minutes.


Evolution of a reverse transcriptase to map N1-methyladenosine in human messenger RNA.

  • Huiqing Zhou‎ et al.
  • Nature methods‎
  • 2019‎

Chemical modifications to messenger RNA are increasingly recognized as a critical regulatory layer in the flow of genetic information, but quantitative tools to monitor RNA modifications in a whole-transcriptome and site-specific manner are lacking. Here we describe a versatile platform for directed evolution that rapidly selects for reverse transcriptases that install mutations at sites of a given type of RNA modification during reverse transcription, allowing for site-specific identification of the modification. To develop and validate the platform, we evolved the HIV-1 reverse transcriptase against N1-methyladenosine (m1A). Iterative rounds of selection yielded reverse transcriptases with both robust read-through and high mutation rates at m1A sites. The optimal evolved reverse transcriptase enabled detection of well-characterized m1A sites and revealed hundreds of m1A sites in human mRNA. This work develops and validates the reverse transcriptase evolution platform, and provides new tools, analysis methods and datasets to study m1A biology.


Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale.

  • Bo Xia‎ et al.
  • Nature methods‎
  • 2015‎

Active DNA demethylation in mammals involves oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). However, genome-wide detection of 5fC at single-base resolution remains challenging. Here we present fC-CET, a bisulfite-free method for whole-genome analysis of 5fC based on selective chemical labeling of 5fC and subsequent C-to-T transition during PCR. Base-resolution 5fC maps showed limited overlap with 5hmC, with 5fC-marked regions more active than 5hmC-marked ones.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: