Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 138 papers

BRD4 is a novel therapeutic target for liver fibrosis.

  • Ning Ding‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Liver fibrosis is characterized by the persistent deposition of extracellular matrix components by hepatic stellate cell (HSC)-derived myofibroblasts. It is the histological manifestation of progressive, but reversible wound-healing processes. An unabated fibrotic response results in chronic liver disease and cirrhosis, a pathological precursor of hepatocellular carcinoma. We report here that JQ1, a small molecule inhibitor of bromodomain-containing protein 4 (BRD4), a member of bromodomain and extraterminal (BET) proteins, abrogate cytokine-induced activation of HSCs. Cistromic analyses reveal that BRD4 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, where BRD4 is colocalized with profibrotic transcription factors. Furthermore, we show that JQ1 is not only protective, but can reverse the fibrotic response in carbon tetrachloride-induced fibrosis in mouse models. Our results implicate that BRD4 can act as a global genomic regulator to direct the fibrotic response through its coordinated regulation of myofibroblast transcription. This suggests BRD4 as a potential therapeutic target for patients with fibrotic complications.


Depletion of fat-resident Treg cells prevents age-associated insulin resistance.

  • Sagar P Bapat‎ et al.
  • Nature‎
  • 2015‎

Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult-onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR are largely unexplored. Here we show, using comparative adipo-immune profiling in mice, that fat-resident regulatory T cells, termed fTreg cells, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTreg cells are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. By contrast, selective depletion of fTreg cells via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie ageing- and obesity-associated IR, and implicate fTreg cells as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR.


A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis.

  • Shannon M Reilly‎ et al.
  • Nature communications‎
  • 2015‎

The search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages. IL-6, in turn, stimulates the phosphorylation of hepatic Stat3 to suppress expression of genes involved in gluconeogenesis, in the process improving glucose handling in obese mice. Preliminary data in a small cohort of obese patients show a similar association. These data support an important role for a subcutaneous adipose tissue-liver axis in mediating the acute metabolic benefits of amlexanox on glucose metabolism, and point to a new therapeutic pathway for type 2 diabetes.


Differential Sox10 genomic occupancy in myelinating glia.

  • Camila Lopez-Anido‎ et al.
  • Glia‎
  • 2015‎

Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897-1914.


Generative modeling of multi-mapping reads with mHi-C advances analysis of Hi-C studies.

  • Ye Zheng‎ et al.
  • eLife‎
  • 2019‎

Current Hi-C analysis approaches are unable to account for reads that align to multiple locations, and hence underestimate biological signal from repetitive regions of genomes. We developed and validated mHi-C, a multi-read mapping strategy to probabilistically allocate Hi-C multi-reads. mHi-C exhibited superior performance over utilizing only uni-reads and heuristic approaches aimed at rescuing multi-reads on benchmarks. Specifically, mHi-C increased the sequencing depth by an average of 20% resulting in higher reproducibility of contact matrices and detected interactions across biological replicates. The impact of the multi-reads on the detection of significant interactions is influenced marginally by the relative contribution of multi-reads to the sequencing depth compared to uni-reads, cis-to-trans ratio of contacts, and the broad data quality as reflected by the proportion of mappable reads of datasets. Computational experiments highlighted that in Hi-C studies with short read lengths, mHi-C rescued multi-reads can emulate the effect of longer reads. mHi-C also revealed biologically supported bona fide promoter-enhancer interactions and topologically associating domains involving repetitive genomic regions, thereby unlocking a previously masked portion of the genome for conformation capture studies.


C53: A novel particulate guanylyl cyclase B receptor activator that has sustained activity in vivo with anti-fibrotic actions in human cardiac and renal fibroblasts.

  • Yang Chen‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2019‎

The native particulate guanylyl cyclase B receptor (pGC-B) activator, C-type natriuretic peptide (CNP), induces anti-remodeling actions in the heart and kidney through the generation of the second messenger 3', 5' cyclic guanosine monophosphate (cGMP). Indeed fibrotic remodeling, particularly in cardiorenal disease states, contributes to disease progression and thus, has been a key target for drug discovery and development. Although the pGC-B/cGMP system has been perceived as a promising anti-fibrotic pathway, its therapeutic potential is limited due to the rapid degradation and catabolism of CNP by neprilysin (NEP) and natriuretic peptide clearance receptor (NPRC). The goal of this study was to bioengineer and test in vitro and in vivo a novel pGC-B activator, C53. Here we established that C53 selectively generates cGMP via the pGC-B receptor and is highly resistant to NEP and has less interaction with NPRC in vitro. Furthermore in vivo, C53 had enhanced cGMP-generating actions that paralleled elevated plasma CNP-like levels, thus indicating a longer circulating half-life compared to CNP. Importantly in human cardiac fibroblasts (HCFs) and renal fibroblasts (HRFs), C53 exerted robust cGMP-generating actions, inhibited TGFβ-1 stimulated HCFs and HRFs proliferation chronically and suppressed the differentiation of HCFs and HRFs to myofibroblasts. The current findings advance innovation in drug discovery and highlight C53 as a novel pGC-B activator with sustained in vivo activity and anti-fibrotic actions in vitro. Future studies are warranted to explore the efficacy and therapeutic opportunity of C53 targeting fibrosis in cardiorenal disease states and beyond.


Vitamin D Switches BAF Complexes to Protect β Cells.

  • Zong Wei‎ et al.
  • Cell‎
  • 2018‎

A primary cause of disease progression in type 2 diabetes (T2D) is β cell dysfunction due to inflammatory stress and insulin resistance. However, preventing β cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and β cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore β cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning β cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Progressive Fibrosis: A Progesterone- and KLF11-Mediated Sexually Dimorphic Female Response.

  • Chandra C Shenoy‎ et al.
  • Endocrinology‎
  • 2017‎

Progressive scarring is ubiquitous postoperatively and in an array of chronic systemic diseases. Recent studies indicate that such scarring has a high female propensity; females are also almost exclusively affected by endometriosis, a common sex steroid-dependent fibrotic disease. Endometriosis-related fibrosis is regulated epigenetically through transcription factor Krüppel-like factor 11 (KLF11). In response to surgical induction of endometriosis, Klf11-/- female mice develop significant fibrosis in contrast to wild-type mice. We therefore hypothesized that female fibrotic predilection was mediated by differential sex steroid regulation of KLF11/collagen 1a1 signaling and investigated the fibrotic response in wild-type and Klf11-/- male and female animals using a sterile peritonitis model. Fibrosis selectively developed in Klf11-/- females. Fibrosis in these animals was almost completely abrogated by ovariectomy. Ovariectomized animals were selectively supplemented with estradiol, medroxyprogesterone acetate (MPA), or dihydrotestosterone; fibrosis was only observed in mice exposed to MPA. Fibrosis therefore selectively developed in Klf11-/- female mice in response to physiological or pharmacological progesterone. The fibrotic response in these animals was also mitigated in response to antiprogestin therapy. Profibrotic gene expression was activated in a primary human peritoneal cell line in response to KLF11 short hairpin RNA and MPA but not estradiol. KLF11/collagen 1a1 signaling previously shown to be linked to fibrosis was thus selectively dysregulated in MPA-treated cells. Our in vivo and in vitro findings in an animal model and human cells, respectively, suggest that progressive fibrotic scarring is a sexually dimorphic response irrespective of etiology; moreover, it is responsive to novel, individualized therapeutic intervention.


FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways.

  • Ai-Luen Wu‎ et al.
  • PloS one‎
  • 2011‎

Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.


An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice.

  • Shannon M Reilly‎ et al.
  • Nature medicine‎
  • 2013‎

Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.


Otitis media in a new mouse model for CHARGE syndrome with a deletion in the Chd7 gene.

  • Cong Tian‎ et al.
  • PloS one‎
  • 2012‎

Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome.


Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve.

  • Rajini Srinivasan‎ et al.
  • Nucleic acids research‎
  • 2012‎

Myelin is essential for the rapidity of saltatory nerve conduction, and also provides trophic support for axons to prevent axonal degeneration. Two critical determinants of myelination are SOX10 and EGR2/KROX20. SOX10 is required for specification of Schwann cells from neural crest, and is required at every stage of Schwann cell development. Egr2/Krox20 expression is activated by axonal signals in myelinating Schwann cells, and is required for cell cycle arrest and myelin formation. To elucidate the integrated function of these two transcription factors during peripheral nerve myelination, we performed in vivo ChIP-Seq analysis of myelinating peripheral nerve. Integration of these binding data with loss-of-function array data identified a range of genes regulated by these factors. In addition, although SOX10 itself regulates Egr2/Krox20 expression, leading to coordinate activation of several major myelin genes by the two factors, there is a large subset of genes that are activated independent of EGR2. Finally, the results identify a set of SOX10-dependent genes that are expressed in early Schwann cell development, but become subsequently repressed by EGR2/KROX20.


Combined deficiency of p50 and cRel in CD4+ T cells reveals an essential requirement for nuclear factor kappaB in regulating mature T cell survival and in vivo function.

  • Ye Zheng‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Signaling pathways involved in regulating T cell proliferation and survival are not well understood. Here we have investigated a possible role of the nuclear factor (NF)-kappaB pathway in regulating mature T cell function by using CD4+ T cells from p50-/- cRel-/- mice, which exhibit virtually no inducible kappaB site binding activity. Studies with these mice indicate an essential role of T cell receptor (TCR)-induced NF-kappaB in regulating interleukin (IL)-2 expression, cell cycle entry, and survival of T cells. Our results further indicate that NF-kappaB regulates TCR-induced expression of antiapoptotic Bcl-2 family members. Strikingly, retroviral transduction of CD4+ T cells with the NF-kappaB-inducing IkappaB kinase beta showed that NF-kappaB activation is not only necessary but also sufficient for T cell survival. In contrast, our results indicate a lack of involvement of NF-kappaB in both IL-2 and Akt-induced survival pathways. In vivo, p50-/- cRel-/- mice showed impaired superantigen-induced T cell responses as well as decreased numbers of effector/memory and regulatory CD4+ T cells. These findings provide the first demonstration of a role for NF-kappaB proteins in regulating T cell function in vivo and establish a critically important function of NF-kappaB in TCR-induced regulation of survival.


PPARδ Promotes Running Endurance by Preserving Glucose.

  • Weiwei Fan‎ et al.
  • Cell metabolism‎
  • 2017‎

Management of energy stores is critical during endurance exercise; a shift in substrate utilization from glucose toward fat is a hallmark of trained muscle. Here we show that this key metabolic adaptation is both dependent on muscle PPARδ and stimulated by PPARδ ligand. Furthermore, we find that muscle PPARδ expression positively correlates with endurance performance in BXD mouse reference populations. In addition to stimulating fatty acid metabolism in sedentary mice, PPARδ activation potently suppresses glucose catabolism and does so without affecting either muscle fiber type or mitochondrial content. By preserving systemic glucose levels, PPARδ acts to delay the onset of hypoglycemia and extends running time by ∼100 min in treated mice. Collectively, these results identify a bifurcated PPARδ program that underlies glucose sparing and highlight the potential of PPARδ-targeted exercise mimetics in the treatment of metabolic disease, dystrophies, and, unavoidably, the enhancement of athletic performance.


Coherence analysis discriminates between retroviral integration patterns in CD34(+) cells transduced under differing clinical trial conditions.

  • Claus V Hallwirth‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2015‎

Unequivocal demonstration of the therapeutic utility of γ-retroviral vectors for gene therapy applications targeting the hematopoietic system was accompanied by instances of insertional mutagenesis. These events stimulated the ongoing development of putatively safer integrating vector systems and analysis methods to characterize and compare integration site (IS) biosafety profiles. Continuing advances in next-generation sequencing technologies are driving the generation of ever-more complex IS datasets. Available bioinformatic tools to compare such datasets focus on the association of integration sites (ISs) with selected genomic and epigenetic features, and the choice of these features determines the ability to discriminate between datasets. We describe the scalable application of point-process coherence analysis (CA) to compare patterns produced by vector ISs across genomic intervals, uncoupled from association with genomic features. To explore the utility of CA in the context of an unresolved question, we asked whether the differing transduction conditions used in the initial Paris and London SCID-X1 gene therapy trials result in divergent genome-wide integration profiles. We tested a transduction carried out under each condition, and showed that CA could indeed resolve differences in IS distributions. Existence of these differences was confirmed by the application of established methods to compare integration datasets.


A polymorphism in the Irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3'UTR.

  • Mayada Metwally‎ et al.
  • Journal of hepatology‎
  • 2019‎

Irisin, the cleaved extra-cellular fragment of the Fibronectin type III domain-containing protein 5 (FNDC5) is a myokine that is proposed to have favorable metabolic activity. We aimed to elucidate the currently undefined role of variants in the FNDC5 gene in non-alcoholic fatty liver disease (NAFLD).


The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease.

  • Christina Chang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

T helper 17 (Th17) cells produce interleukin-17 (IL-17) cytokines and drive inflammatory responses in autoimmune diseases such as multiple sclerosis. The differentiation of Th17 cells is dependent on the retinoic acid receptor-related orphan nuclear receptor RORγt. Here, we identify REV-ERBα (encoded by Nr1d1), a member of the nuclear hormone receptor family, as a transcriptional repressor that antagonizes RORγt function in Th17 cells. REV-ERBα binds to ROR response elements (RORE) in Th17 cells and inhibits the expression of RORγt-dependent genes including Il17a and Il17f Furthermore, elevated REV-ERBα expression or treatment with a synthetic REV-ERB agonist significantly delays the onset and impedes the progression of experimental autoimmune encephalomyelitis (EAE). These results suggest that modulating REV-ERBα activity may be used to manipulate Th17 cells in autoimmune diseases.


Characterization of an Aging-Based Diagnostic Gene Signature and Molecular Subtypes With Diverse Immune Infiltrations in Atherosclerosis.

  • Lei Zhao‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

Objective: Advancing age is a major risk factor of atherosclerosis (AS). Nevertheless, the mechanism underlying this phenomenon remains indistinct. Herein, this study conducted a comprehensive analysis of the biological implications of aging-related genes in AS. Methods: Gene expression profiles of AS and non-AS samples were curated from the GEO project. Differential expression analysis was adopted for screening AS-specific aging-related genes. LASSO regression analysis was presented for constructing a diagnostic model, and the discriminatory capacity was evaluated with ROC curves. Through consensus clustering analysis, aging-based molecular subtypes were conducted. Immune levels were estimated based on the expression of HLAs, immune checkpoints, and immune cell infiltrations. Key genes were then identified via WGCNA. The effects of CEBPB knockdown on macrophage polarization were examined with western blotting and ELISA. Furthermore, macrophages were exposed to 100 mg/L ox-LDL for 48 h to induce macrophage foam cells. After silencing CEBPB, markers of cholesterol uptake, esterification and hydrolysis, and efflux were detected with western blotting. Results: This study identified 28 AS-specific aging-related genes. The aging-related gene signature was developed, which could accurately diagnose AS in both the GSE20129 (AUC = 0.898) and GSE43292 (AUC = 0.685) datasets. Based on the expression profiling of AS-specific aging-related genes, two molecular subtypes were clustered, and with diverse immune infiltration features. The molecular subtype-relevant genes were obtained with WGCNA, which were markedly associated with immune activation. Silencing CEBPB triggered anti-inflammatory M2-like polarization and suppressed foam cell formation. Conclusion: Our findings suggest the critical implications of aging-related genes in diagnosing AS and modulating immune infiltrations.


Preclinical small molecule WEHI-7326 overcomes drug resistance and elicits response in patient-derived xenograft models of human treatment-refractory tumors.

  • Christoph Grohmann‎ et al.
  • Cell death & disease‎
  • 2021‎

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Bile acid metabolites control TH17 and Treg cell differentiation.

  • Saiyu Hang‎ et al.
  • Nature‎
  • 2019‎

Bile acids are abundant in the mammalian gut, where they undergo bacteria-mediated transformation to generate a large pool of bioactive molecules. Although bile acids are known to affect host metabolism, cancer progression and innate immunity, it is unknown whether they affect adaptive immune cells such as T helper cells that express IL-17a (TH17 cells) or regulatory T cells (Treg cells). Here we screen a library of bile acid metabolites and identify two distinct derivatives of lithocholic acid (LCA), 3-oxoLCA and isoalloLCA, as T cell regulators in mice. 3-OxoLCA inhibited the differentiation of TH17 cells by directly binding to the key transcription factor retinoid-related orphan receptor-γt (RORγt) and isoalloLCA increased the differentiation of Treg cells through the production of mitochondrial reactive oxygen species (mitoROS), which led to increased expression of FOXP3. The isoalloLCA-mediated enhancement of Treg cell differentiation required an intronic Foxp3 enhancer, the conserved noncoding sequence (CNS) 3; this represents a mode of action distinct from that of previously identified metabolites that increase Treg cell differentiation, which require CNS1. The administration of 3-oxoLCA and isoalloLCA to mice reduced TH17 cell differentiation and increased Treg cell differentiation, respectively, in the intestinal lamina propria. Our data suggest mechanisms through which bile acid metabolites control host immune responses, by directly modulating the balance of TH17 and Treg cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: