Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 123 papers

Pharmacological changes in cellular Ca2+ homeostasis parallel initiation of atrial arrhythmogenesis in murine Langendorff-perfused hearts.

  • Yanmin Zhang‎ et al.
  • Clinical and experimental pharmacology & physiology‎
  • 2009‎

1. Intracellular Ca(2+) overload has been associated with established atrial arrhythmogenesis. The present experiments went on to correlate acute initiation of atrial arrhythmogenesis in Langendorff-perfused mouse hearts with changes in Ca(2+) homeostasis in isolated atrial myocytes following pharmacological procedures that modified the storage or release of sarcoplasmic reticular (SR) Ca(2+) or inhibited entry of extracellular Ca(2+). 2. Caffeine (1 mmol/L) elicited diastolic Ca(2+) waves in regularly stimulated atrial myocytes immediately following addition. This was followed by a decline in the amplitude of the evoked transients and the disappearance of such diastolic events, suggesting partial SR Ca(2+) depletion. 3. Cyclopiazonic acid (CPA; 0.15 micromol/L) produced more gradual reductions in evoked Ca(2+) transients and abolished diastolic Ca(2+) events produced by the further addition of caffeine. 4. Nifedipine (0.5 micromol/L) produced immediate reductions in evoked Ca(2+) transients. Further addition of caffeine produced an immediate increase followed by a decline in the amplitude of the evoked Ca(2+) transients, without eliciting diastolic Ca(2+) events. 5. These findings correlated with changes in spontaneous and provoked atrial arrhythmogenecity in mouse isolated Langendorf-perfused hearts. Thus, caffeine was pro-arrhythmogenic immediately following but not > 5 min after application and both CPA and nifedipine pretreatment inhibited such arrhythmogenesis. 6. Together, these findings relate acute atrial arrhythmogenesis in intact hearts to diastolic Ca(2+) events in atrial myocytes that, in turn, depend upon a finite SR Ca(2+) store and diastolic Ca(2+) release following Ca(2+)-induced Ca(2+) release initiated by the entry of extracellular Ca(2+).


Atrial arrhythmogenicity in aged Scn5a+/DeltaKPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction.

  • Laila Guzadhur‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2010‎

Recent studies have reported that human mutations in Nav1.5 predispose to early age onset atrial arrhythmia. The present experiments accordingly assess atrial arrhythmogenicity in aging Scn5a+/KPQ mice modeling long QT3 syndrome in relationship to cardiac Na(+) channel, Nav1.5, expression. Atrial electrophysiological properties in isolated Langendorff-perfused hearts from 3- and 12-month-old wild type (WT), and Scn5a+/KPQ mice were assessed using programmed electrical stimulation and their Nav1.5 expression assessed by Western blot. Cardiac conduction properties were assessed electrocardiographically in intact anesthetized animals. Monophasic action potential recordings demonstrated increased atrial arrhythmogenicity specifically in aged Scn5a+/DeltaKPQ hearts. These showed greater action potential duration/refractory period ratios but lower atrial Nav1.5 expression levels than aged WT mice. Atrial Nav1.5 levels were higher in young Scn5a+/DeltaKPQ than young WT. These levels increased with age in WT but not Scn5a+/DeltaKPQ. Both young and aged Scn5a+/DeltaKPQ mice showed lower heart rates and longer PR intervals than their WT counterparts. Young Scn5a+/DeltaKPQ mice showed longer QT and QTc intervals than young WT. Aged Scn5a+/DeltaKPQ showed longer QRS durations than aged WT. PR intervals were prolonged and QT intervals were shortened in young relative to aged WT. In contrast, ECG parameters were similar between young and aged Scn5a+/DeltaKPQ. Aged murine Scn5a+/DeltaKPQ hearts thus exhibit an increased atrial arrhythmogenicity. The differing Nav1.5 expression and electrocardiographic indicators of slowed cardiac conduction between Scn5a+/DeltaKPQ and WT, which show further variations associated with aging, may contribute toward atrial arrhythmia in aged Scn5a+/DeltaKPQ hearts.


Estrogen altered visceromotor reflex and P2X(3) mRNA expression in a rat model of colitis.

  • Juan Fan‎ et al.
  • Steroids‎
  • 2009‎

P2X(3) and P2X(2/3) receptors are expressed in peripheral tissues and dorsal root ganglia (DRG) and participate in peripheral pain. However, the mechanisms underlying P2X receptor-mediated nociception at different ovarial hormone levels has not been examined. In this study, 24 female rats were randomly divided into sham-operated (sham), ovariectomized (OVX), estrogen-treated, and estrogen-progesterone-treated groups with colitis. In each group, the visceromotor reflex (VMR) to colorectal distension was tested and the DRG were harvested for a real-time PCR analysis of P2X(3) and P2X(2) receptor mRNA. In OVX rats with colitis we found that the VMR to colorectal distension and P2X(3) receptor mRNA in DRG were both significantly decreased. Estrogen replacement reversed the decrease. However, neither the VMR nor the P2X(3) mRNA level in DRG from OVX colitis rats was reversed by the complex of estrogen and progesterone. Patch-clamp recording showed that in colitis rats, estradiol rapidly potentiated the sustained and transient currents evoked by ATP to 336+/-49% and 122+/-12% of controls, respectively, in a subpopulation of DRG neurons, which were blocked by ICI 182, 780, an antagonist of the estrogen receptor. Whereas progesterone rapidly inhibited the transient currents induced by ATP to 67+/-10% of control and had no effect on the sustained currents evoked by the same agonist. These results indicate that P2X(3) receptors are likely to be an important contributor to the altered colonic functions in colitis rats, where the underlying mechanisms are closely related to endogenous estrogen modulation.


Eupolyphaga sinensis walker displays inhibition on hepatocellular carcinoma through regulating cell growth and metastasis signaling.

  • Yanmin Zhang‎ et al.
  • Scientific reports‎
  • 2014‎

Tumor growth and metastasis are responsible for most cancer patients' deaths. Here, we report that eupolyphaga sinensis walker has an essential role in resisting hepatocellular carcinoma growth and metastasis. Compared with proliferation, colony formation, transwell assay and transplantable tumor in nude mouse in vitro and vivo, eupolyphaga sinensis walker extract (ESWE) showed good inhibition on the SMMC-7721 cell growth and metastasis. Using genome-wide microarray analysis, we found the down-regulated growth and metastasis factors, and selected down-regulated genes were confirmed by real-time PCR. Knockdown of a checkpoint PKCβ by siRNA significantly attenuated tumor inhibition and metastasis effects of ESWE. Moreover, our results indicate ESWE inhibits HCC growth by not only downregulating the signaling of PKCβ, Akt, m-TOR, Erk1/2, MEK-2, Raf and JNK-1, but also increasing cyclin D1 protein levels and decreasing amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins. At the same time, ESWE reduced MMP2, MMP9 and CXCR4, PLG, NFκB and P53 activities. Overall, our studies demonstrate that ESWE is a key factor in growth and metastasis signaling inhibitor targeting the PKC, AKT, MAPK signaling and related metastasis signaling, having potential in cancer therapy.


Protective effects of Guanxin Shutong capsule drug-containing serum on tumor necrosis factor-α-induced endothelial dysfunction through nicotinamide adenine dinucleotide phosphate oxidase and the nitric oxide pathway.

  • Yanjun Cao‎ et al.
  • Experimental and therapeutic medicine‎
  • 2014‎

The Chinese medicinal formula Guanxin Shutong capsule (GXSTC) has been used for almost 10 years as a clinical treatment for chest pain, depression, palpitation and cardiovascular diseases. The aim of this study was to investigate the effects of GXSTC drug-containing serum on tumor necrosis factor-α (TNF-α)-stimulated endothelial cells. Cell viability was measured by MTT assay, and nitric oxide (NO) levels and NO synthase (NOS) activity were measured as standards of endothelial dysfunction. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were evaluated using commercial kits. In addition, the protein expression of endothelial NOS (eNOS), AKT and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits was examined to evaluate the effect of GXSTC drug-containing serum on ECV304 cells. GXSTC significantly reversed the decrease in NO production induced by TNF-α (5 ng/ml) in ECV304 cells. The expression of NADPH oxidase subunits was increased by TNF-α treatment, but markedly inhibited by treatment with GXSTC in TNF-α-stimulated cells. In summary, GXSTC increased the production of NO in ECV304 cells and exerted a protective effect on ECV304 cells stimulated with TNF-α by upregulating the mRNA and protein expression of eNOS. This was accompanied by increased SOD activity and reduced MDA levels. These results suggested that GXSTC protects the endothelium via the NO pathway and exhibits antioxidant effects.


Puerarin protected the brain from cerebral ischemia injury via astrocyte apoptosis inhibition.

  • Nan Wang‎ et al.
  • Neuropharmacology‎
  • 2014‎

Puerarin is extensively attractive because of its superior neuroprotective effects in stroke prevention. This paper focused on the protective effect of puerarin both in vivo and in vitro. Middle cerebral artery occlusion (MCAO) was operated on male Sprague-Dawley rat for 2 h, different doses of puerarin (2.62, 7.86 and 23.59 mg/kg) or vehicle were gavaged 1 h after reperfusion. Rats were sacrificed after 24 h or 7 days treatment of puerarin/vehicle. In 7.86 and 23.59 mg/kg groups, infarct volume was reduced (P < 0.05) when puerarin was given once; 7 days puerarin intervention further reduced the infarct volume (P < 0.05) compared with vehicle-treated animal. The modified neurological severity score (mNSS) was also raised in day 4 in 7.86 and 23.59 mg/kg groups and in all groups in day 7 compared with vehicle (P < 0.05). The number of Nissl body, cleaved caspase-3 and GFAP positive cells increased observably after stroke in dose-dependence in rats. In our in vitro study, we have found that puerarin inhibited the pro-apoptosis factor and upregulated the BDNF secret of astrocytes after OGD-R. This indicated that the repairing effect of puerarin was associated with the astrocyte protection.


Reduced Na(+) and higher K(+) channel expression and function contribute to right ventricular origin of arrhythmias in Scn5a+/- mice.

  • Claire A Martin‎ et al.
  • Open biology‎
  • 2012‎

Brugada syndrome (BrS) is associated with ventricular tachycardia originating particularly in the right ventricle (RV). We explore electrophysiological features predisposing to such arrhythmic tendency and their possible RV localization in a heterozygotic Scn5a+/- murine model. Na(v)1.5 mRNA and protein expression were lower in Scn5a+/- than wild-type (WT), with a further reduction in the RV compared with the left ventricle (LV). RVs showed higher expression levels of K(v)4.2, K(v)4.3 and KChIP2 in both Scn5a+/- and WT. Action potential upstroke velocity and maximum Na(+) current (I(Na)) density were correspondingly decreased in Scn5a+/-, with a further reduction in the RV. The voltage dependence of inactivation was shifted to more negative values in Scn5a+/-. These findings are predictive of a localized depolarization abnormality leading to slowed conduction. Persistent Na(+) current (I(pNa)) density was decreased in a similar pattern to I(Na). RV transient outward current (I(to)) density was greater than LV in both WT and Scn5a+/-, and had larger time constants of inactivation. These findings were also consistent with the observation that AP durations were smallest in the RV of Scn5a+/-, fulfilling predictions of an increased heterogeneity of repolarization as an additional possible electrophysiological mechanism for arrhythmogenesis in BrS.


Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts.

  • Ian N Sabir‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2008‎

Alternans and arrhythmogenicity were studied in hypokalaemic (3.0 mM K(+)) Langendorff-perfused murine hearts paced at high rates. Epicardial and endocardial monophasic action potentials were recorded and durations quantified at 90% repolarization. Alternans and arrhythmia occurred in hypokalaemic, but not normokalaemic (5.2 mM K(+)) hearts (P<0.01): this was prevented by treatment with lidocaine (10 microM, P<0.01). Fourier analysis then confirmed transition from monomorphic to polymorphic waveforms for the first time in the murine heart. Alternans and arrhythmia were associated with increases in the slopes of restitution curves, obtained for the first time in the murine heart, while the anti-arrhythmic effect of lidocaine was associated with decreased slopes. Thus, hypokalaemia significantly increased (P<0.05) maximal gradients (from 0.55+/-0.14 to 2.35+/-0.67 in the epicardium and from 0.67+/-0.13 to 1.87 +/-0.28 in the endocardium) and critical diastolic intervals (DIs) at which gradients equalled unity (from -2.14+/-0.52 ms to 50.93+/-14.45 ms in the epicardium and from 8.14+/-1.49 ms to 44.64+/-5 ms in the endocardium). While treatment of normokalaemic hearts with lidocaine had no significant effect (P>0.05) on either maximal gradients (0.78+/-0.27 in the epicardium and 0.83+/-0.45 in the endocardium) or critical DIs (6.06+/-2.10 ms and 7.04+/-3.82 ms in the endocardium), treatment of hypokalaemic hearts with lidocaine reduced (P<0.05) both these parameters (1.05+/-0.30 in the epicardium and 0.89+/-0.36 in the endocardium and 30.38+/-8.88 ms in the epicardium and 31.65+/-4.78 ms in the endocardium, respectively). We thus demonstrate that alternans contributes a dynamic component to arrhythmic substrate during hypokalaemia, that restitution may furnish an underlying mechanism and that these phenomena are abolished by lidocaine, both recapitulating and clarifying clinical findings.


Multiple targets for flecainide action: implications for cardiac arrhythmogenesis.

  • Samantha C Salvage‎ et al.
  • British journal of pharmacology‎
  • 2018‎

Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function.


Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts.

  • Shiraz Ahmad‎ et al.
  • Mechanisms of ageing and development‎
  • 2018‎

Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.


Cardiac electrophysiological adaptations in the equine athlete-Restitution analysis of electrocardiographic features.

  • Mengye Li‎ et al.
  • PloS one‎
  • 2018‎

Exercising horses uniquely accommodate 7-8-fold increases in heart rate (HR). The present experiments for the first time analysed the related adaptations in action potential (AP) restitution properties recorded by in vivo telemetric electrocardiography from Thoroughbred horses. The horses were subjected to a period of acceleration from walk to canter. The QRS durations, and QT and TQ intervals yielded AP conduction velocities, AP durations (APDs) and diastolic intervals respectively. From these, indices of active, λ = QT/(QRS duration), and resting, λ0 = TQ/(QRS duration), AP wavelengths were calculated. Critical values of QT and TQ intervals, and of λ and λ0 at which plots of these respective pairs of functions showed unity slope, were obtained. These were reduced by 38.9±2.7% and 86.2±1.8%, and 34.1±3.3% and 85.9±1.2%, relative to their resting values respectively. The changes in λ were attributable to falls in QT interval rather than QRS duration. These findings both suggested large differences between the corresponding critical (129.1±10.8 or 117.4±5.6 bpm respectively) and baseline HRs (32.9±2.1 (n = 7) bpm). These restitution analyses thus separately identified concordant parameters whose adaptations ensure the wide range of HRs over which electrophysiological activation takes place in an absence of heart block or arrhythmias in equine hearts. Since the horse is amenable to this in vivo electrophysiological analysis and displays a unique wide range of heart rates, it could be a novel cardiac electrophysiology animal model for the study of sudden cardiac death in human athletes.


Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse.

  • Samantha C Salvage‎ et al.
  • Journal of cell science‎
  • 2019‎

Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 μM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.


Design and synthesis of 1H-indazole-3-carboxamide derivatives as potent and selective PAK1 inhibitors with anti-tumour migration and invasion activities.

  • Mingliang Zhang‎ et al.
  • European journal of medicinal chemistry‎
  • 2020‎

Aberrant activation of p21-activated kinase 1 (PAK1) is associated with tumour progression, and PAK1 has been recognized as a promising target for anticancer drug discovery. However, the development of potent PAK1 inhibitors with satisfactory kinase selectivity and favourable physicochemical properties remains a daunting challenge. Herein, we identified the 1H-indazole-3-carboxamide derivatives as potential PAK1 inhibitors using a fragment-based screening approach. The representative compound 30l exhibited excellent enzyme inhibition (PAK1 IC50 = 9.8 nM) and high PAK1 selectivity toward a panel of 29 kinases. The Structure-activity relationship (SAR) analysis showed that substituting of an appropriate hydrophobic ring in the deep back pocket and introducing a hydrophilic group in the bulk solvent region were critical for PAK1 inhibitory activity and selectivity. Additionally, the hERG channel activity of 30l demonstrated its low risk of hERG toxicity. Furthermore, it significantly suppressed the migration and invasion of MDA-MB-231 cells by downregulating Snail expression without affecting the tumour growth. These results provide a new type of chemical scaffolds targeting PAK1 and suggested that 1H-indazole-3-carboxamide derivatives may serve as lead compounds for the development of potential and selective PAK1 inhibitors.


Multiple Intravenous Injections of Valproic Acid-Induced Mesenchymal Stem Cell from Human-Induced Pluripotent Stem Cells Improved Cardiac Function in an Acute Myocardial Infarction Rat Model.

  • Shuyuan Guo‎ et al.
  • BioMed research international‎
  • 2020‎

Mounting evidence indicates that the mesenchymal stem cell (MSC) injection is safe and efficacious for treating cardiomyopathy; however, there is limited information relating to multiple intravenous injections of human-induced pluripotent stem cell-derived mesenchymal stem cell (hiPSC-MSC) and long-term evaluation of the cardiac function. In the current study, MSC-like cells were derived from human-induced pluripotent stem cells through valproic acid (VPA) induction and continuous cell passages. The derived spindle-like cells expressed MSC-related markers, secreted angiogenic and immune-regulatory factors, and could be induced to experience chondrogenic and adipogenic differentiation. During the induction process, expression of epithelial-to-mesenchymal transition- (EMT-) related gene N-cadherin and vimentin was upregulated to a very high level, and the expression of pluripotency-related genes Sox2 and Oct4 was downregulated or remained unchanged, indicating that VPA initiated EMT by upregulating the expression of EMT promoting genes and downregulating that of pluripotency-related genes. Two and four intravenous hiPSC-MSC injections (106 cells/per injections) were provided, respectively, to model rats one week after acute myocardial infarction (AMI). Cardiac function parameters were dynamically monitored during a 12-week period. Two and four cell injections significantly the improved left ventricular ejection fraction and left ventricular fractional shortening; four-injection markedly stimulated angiogenesis reduced the scar size and cell apoptosis number in the scar area in comparison with that of the untreated control model rats. Although the difference was insignificant, the hiPSC-MSC administration delayed the increase of left ventricular end-diastolic dimension to different extents compared with that of the PBS-injection control. No perceptible immune reaction symptom or hiPSC-MSC-induced tumour formation was found over 12 weeks. Compared with the PBS-injection control, four injections produced better outcome than two injections; as a result, at least four rounds of MSC injections were suggested for AMI treatment.


The discovery of quinoline derivatives, as NF-κB inducing kinase (NIK) inhibitors with anti-inflammatory effects in vitro, low toxicities against T cell growth.

  • Jianing Song‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2021‎

NIK is a critical regulatory protein of the non-classical NF-kB pathway, and its dysregulated activation has been proved to be one of the pathogenic factors in a variety of autoimmune diseases and inflammatory diseases. Nevertheless, its corresponding development of inhibitors faces many obstacles, including the lack of structure types of known inhibitors, immature activity evaluation methods of compounds in vitro. In this study, a series of quinoline derivatives were obtained through rational design and chemical synthesis. Among them, the representative compounds 17c and 24c have excellent inhibitory activities on LPS-induced macrophage (J774) nitric oxide release and anti-Con A-stimulated primary T cell proliferation. This evaluation method has good universality and overcomes the obstacles mentioned above, which are faced by the current inhibitor research to a certain extent. Besides, the compound's toxicity against the growth of T cells under non-stress conditions was evaluated, for the first time, as an indicator for the investigation to avoid potential safety risks. Pharmacokinetic properties evaluation of the less toxic compound 24c confirmed its good metabolic behavior (especially oral properties, F% = 21.7%), and subsequent development value.


Generation of induced pluripotent stem cells (iPSCs) from an infant with Pompe disease carrying with compound mutations of R608X and E888X in GAA gene.

  • Yanmin Zhang‎ et al.
  • Stem cell research‎
  • 2019‎

Induced pluripotent stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) isolated from the peripheral blood of a five months-old boy with glycogen storage disease type II(GSD II, also known as Pompe disease, PD) carries compound mutations R608X E888X in GAA gene. PBMCs were reprogrammed using non-integrative Sendai viral vectors containing reprogramming factors OCT4, SOX2, KLF4 and C-MYC. iPSCs were shown to express pluripotent markers, have trilineage differentiation potential, carry GAA-R608X and GAA-E888X compound mutations, have a normal karyotype. It is useful tool for studying GSDII.


Cantharidin treatment inhibits hepatocellular carcinoma development by regulating the JAK2/STAT3 and PI3K/Akt pathways in an EphB4-dependent manner.

  • Man Zhu‎ et al.
  • Pharmacological research‎
  • 2020‎

Hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. The tyrosine kinase receptor EphB4 promotes oncogenesis and tumor development and progression. Its inhibition is regarded as an effective strategy for the treatment of solid tumors. In the present study, we identified cantharidin as a novel EphB4 inhibitor for HCC treatment and evaluated the underlying molecular pharmacological mechanisms of action. We observed increased expression levels of EphB4 in HCC patients and a positive correlation between EphB4 and p-JAK2 levels in HCC patient samples. Knockdown of EphB4 using small interfering RNA decreased the expression levels of p-JAK2 and p-STAT3 in HCC cells, suggesting JAK2/STAT3 being a novel downstream signaling target of EphB4. Cell viability experiments revealed that the anti-cancer effect of cantharidin was positively correlated with EphB4 expression levels in HCC cell lines. We confirmed the potent antiproliferative activity of cantharidin on HepG2 cells with high expression of EphB4 and tumor xenograft. Molecular docking assay, immunoblotting assay and quantitative reverse transcription PCR assay indicated that cantharidin bound to EphB4, and thereby resulted in EphB4 suppression at mRNA and protein levels. Hep3B and SMMC-7721 cells were with low expression of EphB4. In EphB4-/HepG2, EphB4+/HepG2, and EphB4+/Hep3B cells, EphB4 knockdown alleviated the cantharidin-induced decrease in cell viability and colony formation ability and increase in apoptosis in HepG2 cells, while its overexpression exacerbated these effects in Hep3B cells and increased the apoptosis of HepG2 cells. In nude mouse models, cantharidin suppressed tumor growth more effectively in EphB4+/SMMC-7721 xenografts than in wild-type SMMC-7721 xenografts. Underlying mechanistic study showed that by targeting EphB4, cantharidin blocked a novel target, the downstream JAK2/STAT3 pathway, and the previously known target, the PI3K/Akt signaling, resulting in intrinsic apoptosis. These results indicated that cantharidin may be a potential candidate for HCC treatment by regulating the EphB4 signaling pathway.


Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data.

  • Xin Hui S Chan‎ et al.
  • PLoS medicine‎
  • 2020‎

Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria.


Reduced cardiomyocyte Na+ current in the age-dependent murine Pgc-1β-/- model of ventricular arrhythmia.

  • Shiraz Ahmad‎ et al.
  • Journal of cellular physiology‎
  • 2019‎

Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p < 0.0001), without independent effects of, or interactions with age. Voltages at half-maximal current V*, and steepness factors k in plots of voltage dependences of both Na+ current activation and inactivation, and time constants for its postrepolarisation recovery from inactivation, remained indistinguishable through all experimental groups. So were the activation and rectification properties of delayed outward (K+ ) currents, demonstrated from tail currents reflecting current recoveries from respective varying or constant voltage steps. These current-voltage properties directly implicate decreases specifically in maximum available Na+ current with unchanged voltage dependences and unaltered K+ current properties, in proarrhythmic reductions in AP conduction velocity in Pgc-1β-/- ventricles.


Discovery of novel coumarin derivatives as potent and orally bioavailable BRD4 inhibitors based on scaffold hopping.

  • Zhimin Zhang‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2019‎

The bromodomain and extra-terminal (BET) bromodomains, particularly BRD4, have been identified as promising therapeutic targets in the treatment of many human disorders such as cancer, inflammation, obesity, and cardiovascular disease. Recently, the discovery of novel BRD4 inhibitors has garnered substantial interest. Starting from scaffold hopping of the reported compound dihydroquinazolinone (PFI-1), a series of coumarin derivatives were designed and synthesised as a new chemotype of BRD4 inhibitors. Interestingly, the representative compounds 13 exhibited potent BRD4 binding affinity and cell proliferation inhibitory activity, and especially displayed a favourable PK profile with high oral bioavailability (F = 49.38%) and metabolic stability (T1/2 = 4.2 h), meaningfully making it as a promising lead compound for further drug development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: