Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 44 papers

Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women.

  • Arkan Abadi‎ et al.
  • PloS one‎
  • 2009‎

Advancements in animal models and cell culture techniques have been invaluable in the elucidation of the molecular mechanisms that regulate muscle atrophy. However, few studies have examined muscle atrophy in humans using modern experimental techniques. The purpose of this study was to examine changes in global gene transcription during immobilization-induced muscle atrophy in humans and then explore the effects of the most prominent transcriptional alterations on protein expression and function. Healthy men and women (N = 24) were subjected to two weeks of unilateral limb immobilization, with muscle biopsies obtained before, after 48 hours (48 H) and 14 days (14 D) of immobilization. Muscle cross sectional area (approximately 5%) and strength (10-20%) were significantly reduced in men and women (approximately 5% and 10-20%, respectively) after 14 D of immobilization. Micro-array analyses of total RNA extracted from biopsy samples at 48 H and 14 D uncovered 575 and 3,128 probes, respectively, which were significantly altered during immobilization. As a group, genes involved in mitochondrial bioenergetics and carbohydrate metabolism were predominant features at both 48 H and 14 D, with genes involved in protein synthesis and degradation significantly down-regulated and up-regulated, respectively, at 14 D of muscle atrophy. There was also a significant decrease in the protein content of mitochondrial cytochrome c oxidase, and the enzyme activity of cytochrome c oxidase and citrate synthase after 14 D of immobilization. Furthermore, protein ubiquitination was significantly increased at 48 H but not 14 D of immobilization. These results suggest that transcriptional and post-transcriptional suppression of mitochondrial processes is sustained throughout 14 D of immobilization, while protein ubiquitination plays an early but transient role in muscle atrophy following short-term immobilization in humans.


mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance.

  • Samantha Haller‎ et al.
  • Cell stem cell‎
  • 2017‎

The balance between self-renewal and differentiation ensures long-term maintenance of stem cell (SC) pools in regenerating epithelial tissues. This balance is challenged during periods of high regenerative pressure and is often compromised in aged animals. Here, we show that target of rapamycin (TOR) signaling is a key regulator of SC loss during repeated regenerative episodes. In response to regenerative stimuli, SCs in the intestinal epithelium of the fly and in the tracheal epithelium of mice exhibit transient activation of TOR signaling. Although this activation is required for SCs to rapidly proliferate in response to damage, repeated rounds of damage lead to SC loss. Consistently, age-related SC loss in the mouse trachea and in muscle can be prevented by pharmacologic or genetic inhibition, respectively, of mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight an evolutionarily conserved role of TOR signaling in SC function and identify repeated rounds of mTORC1 activation as a driver of age-related SC decline.


Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence.

  • Kevin Perez‎ et al.
  • Aging‎
  • 2022‎

Aging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia or frailty include inflammation, muscle stem cell depletion, mitochondrial dysfunction, and loss of motor neurons, but whether there are key drivers of sarcopenia are not yet known. To gain deeper insights into age-related muscle loss, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, elderly, and frail human subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17). This combined approach revealed changes in gene expression that occur with age and frailty in multiple cell types comprising mature skeletal muscle. Notably, we found increased expression of the genes MYH8 and PDK4, and decreased expression of the gene IGFN1, in aged muscle. We validated several key genes changes in fixed human muscle tissue using digital spatial profiling. We also identified a small population of nuclei that express CDKN1A, present only in aged samples, consistent with p21cip1-driven senescence in this subpopulation. Overall, our findings identify unique cellular subpopulations in aged and sarcopenic skeletal muscle, which will facilitate the development of new therapeutic strategies to combat age-related frailty.


Aging impairs the osteocytic regulation of collagen integrity and bone quality.

  • Charles A Schurman‎ et al.
  • Bone research‎
  • 2024‎

Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFβ signaling and PLR, but aging did not worsen the existing PLR suppression in male TβRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFβ. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFβ-dependent maintenance of collagen integrity.


Human embryonic stem cells express elevated levels of multiple pro-apoptotic BCL-2 family members.

  • David T Madden‎ et al.
  • PloS one‎
  • 2011‎

Two of the greatest challenges in regenerative medicine today remain (1) the ability to culture human embryonic stem cells (hESCs) at a scale sufficient to satisfy clinical demand and (2) the ability to eliminate teratoma-forming cells from preparations of cells with clinically desirable phenotypes. Understanding the pathways governing apoptosis in hESCs may provide a means to address these issues. Limiting apoptosis could aid scaling efforts, whereas triggering selective apoptosis in hESCs could eliminate unwanted teratoma-forming cells. We focus here on the BCL-2 family of proteins, which regulate mitochondrial-dependent apoptosis. We used quantitative PCR to compare the steady-state expression profile of all human BCL-2 family members in hESCs with that of human primary cells from various origins and two cancer lines. Our findings indicate that hESCs express elevated levels of the pro-apoptotic BH3-only BCL-2 family members NOXA, BIK, BIM, BMF and PUMA when compared with differentiated cells and cancer cells. However, compensatory expression of pro-survival BCL-2 family members in hESCs was not observed, suggesting a possible explanation for the elevated rates of apoptosis observed in proliferating hESC cultures, as well as a mechanism that could be exploited to limit hESC-derived neoplasms.


Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice.

  • Xu-Gang Xia‎ et al.
  • PLoS genetics‎
  • 2006‎

RNA interference (RNAi) has been used increasingly for reverse genetics in invertebrates and mammalian cells, and has the potential to become an alternative to gene knockout technology in mammals. Thus far, only RNA polymerase III (Pol III)-expressed short hairpin RNA (shRNA) has been used to make shRNA-expressing transgenic mice. However, widespread knockdown and induction of phenotypes of gene knockout in postnatal mice have not been demonstrated. Previous studies have shown that Pol II synthesizes micro RNAs (miRNAs)-the endogenous shRNAs that carry out gene silencing function. To achieve efficient gene knockdown in mammals and to generate phenotypes of gene knockout, we designed a construct in which a Pol II (ubiquitin C) promoter drove the expression of an shRNA with a structure that mimics human miRNA miR-30a. Two transgenic lines showed widespread and sustained shRNA expression, and efficient knockdown of the target gene Sod2. These mice were viable but with phenotypes of SOD2 deficiency. Bigenic heterozygous mice generated by crossing these two lines showed nearly undetectable target gene expression and phenotypes consistent with the target gene knockout, including slow growth, fatty liver, dilated cardiomyopathy, and premature death. This approach opens the door of RNAi to a wide array of well-established Pol II transgenic strategies and offers a technically simpler, cheaper, and quicker alternative to gene knockout by homologous recombination for reverse genetics in mice and other mammalian species.


Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

  • Christopher D Wiley‎ et al.
  • Aging cell‎
  • 2017‎

Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo.


Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin.

  • Dong Eun Kim‎ et al.
  • Aging cell‎
  • 2020‎

ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross-link repair. Ercc1-/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1-/Δ mice display combined features of human progeroid and cancer-prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1-/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1-/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1-/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence-associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor-suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1-deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1-/Δ mouse skin, where the apoptotic cells are localized, compared to age-matched wild-type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1-depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health- or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.


Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans.

  • Aric N Rogers‎ et al.
  • Cell metabolism‎
  • 2011‎

Reducing protein synthesis slows growth and development but can increase adult life span. We demonstrate that knockdown of eukaryotic translation initiation factor 4G (eIF4G), which is downregulated during starvation and dauer state, results in differential translation of genes important for growth and longevity in C. elegans. Genome-wide mRNA translation state analysis showed that inhibition of IFG-1, the C. elegans ortholog of eIF4G, results in a relative increase in ribosomal loading and translation of stress response genes. Some of these genes are required for life span extension when IFG-1 is inhibited. Furthermore, enhanced ribosomal loading of certain mRNAs upon IFG-1 inhibition was correlated with increased mRNA length. This association was supported by changes in the proteome assayed via quantitative mass spectrometry. Our results suggest that IFG-1 mediates the antagonistic effects on growth and somatic maintenance by regulating mRNA translation of particular mRNAs based, in part, on transcript length.


Eccentric exercise activates novel transcriptional regulation of hypertrophic signaling pathways not affected by hormone changes.

  • Lauren G MacNeil‎ et al.
  • PloS one‎
  • 2010‎

Unaccustomed eccentric exercise damages skeletal muscle tissue, activating mechanisms of recovery and remodeling that may be influenced by the female sex hormone 17beta-estradiol (E2). Using high density oligonucleotide based microarrays, we screened for differences in mRNA expression caused by E2 and eccentric exercise. After random assignment to 8 days of either placebo (CON) or E2 (EXP), eighteen men performed 150 single-leg eccentric contractions. Muscle biopsies were collected at baseline (BL), following supplementation (PS), +3 hours (3H) and +48 hours (48H) after exercise. Serum E2 concentrations increased significantly with supplementation (P<0.001) but did not affect microarray results. Exercise led to early transcriptional changes in striated muscle activator of Rho signaling (STARS), Rho family GTPase 3 (RND3), mitogen activated protein kinase (MAPK) regulation and the downstream transcription factor FOS. Targeted RT-PCR analysis identified concurrent induction of negative regulators of calcineurin signaling RCAN (P<0.001) and HMOX1 (P = 0.009). Protein contents were elevated for RND3 at 3H (P = 0.02) and FOS at 48H (P<0.05). These findings indicate that early RhoA and NFAT signaling and regulation are altered following exercise for muscle remodeling and repair, but are not affected by E2.


Genome-wide DNA methylation changes with age in disease-free human skeletal muscle.

  • Artem Zykovich‎ et al.
  • Aging cell‎
  • 2014‎

A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.


Age-related micro-RNA abundance in individual C. elegans.

  • Mark Lucanic‎ et al.
  • Aging‎
  • 2013‎

Non-coding small RNAs of the micro-RNA class (miRNA) are conserved regulators of gene function with a broad impact on biological processes. We screened miRNA levels for age-related changes in individual worms and investigated their influence on the lifespan of the nematode C. elegans. We measured the abundance of 69 miRNAs expressed in individual animals at different ages with over thirty five thousand discrete quantitative nano-fluidic polymerase chain reactions. We found that miRNA abundance was highly variable between individual worms raised under identical conditions and that expression variability generally increased with age. To identify expression differences associated with either reproductive or somatic tissues, we analyzed wild type and mutants that lacked germlines. miRNAs from the mir-35-41 cluster increased in abundance with age in wild type animals, but were nearly absent from mutants lacking a germline, suggesting their age-related increase originates from the germline. Most miRNAs with age-dependent levels did not have a major effect on lifespan, as corresponding deletion mutants exhibited wild-type lifespans. The major exception to this was mir-71, which increased in abundance with age and was required for normal longevity. Our genetic characterization indicates that mir-71 acts at least partly in parallel to insulin/IGF like signals to influence lifespan.


A human protein interaction network shows conservation of aging processes between human and invertebrate species.

  • Russell Bell‎ et al.
  • PLoS genetics‎
  • 2009‎

We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.


Suppressors of Superoxide-H2O2 Production at Site IQ of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury.

  • Martin D Brand‎ et al.
  • Cell metabolism‎
  • 2016‎

Using high-throughput screening we identified small molecules that suppress superoxide and/or H2O2 production during reverse electron transport through mitochondrial respiratory complex I (site IQ) without affecting oxidative phosphorylation (suppressors of site IQ electron leak, "S1QELs"). S1QELs diminished endogenous oxidative damage in primary astrocytes cultured at ambient or low oxygen tension, showing that site IQ is a normal contributor to mitochondrial superoxide-H2O2 production in cells. They diminished stem cell hyperplasia in Drosophila intestine in vivo and caspase activation in a cardiomyocyte cell model driven by endoplasmic reticulum stress, showing that superoxide-H2O2 production by site IQ is involved in cellular stress signaling. They protected against ischemia-reperfusion injury in perfused mouse heart, showing directly that superoxide-H2O2 production by site IQ is a major contributor to this pathology. S1QELs are tools for assessing the contribution of site IQ to cell physiology and pathology and have great potential as therapeutic leads.


Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types.

  • Chandani Limbad‎ et al.
  • iScience‎
  • 2022‎

Cellular senescence is a driver of many age-related pathologies. There is an active search for pharmaceuticals termed senolytics that can mitigate or remove senescent cells in vivo by targeting genes that promote the survival of senescent cells. We utilized single-cell RNA sequencing to identify CRYAB as a robust senescence-induced gene and potential target for senolysis. Using chemical inhibitor screening for CRYAB disruption, we identified 25-hydroxycholesterol (25HC), an endogenous metabolite of cholesterol biosynthesis, as a potent senolytic. We then validated 25HC as a senolytic in mouse and human cells in culture and in vivo in mouse skeletal muscle. Thus, 25HC represents a potential class of senolytics, which may be useful in combating diseases or physiologies in which cellular senescence is a key driver.


Extracellular Nicotinamide Phosphoribosyltransferase Is a Component of the Senescence-Associated Secretory Phenotype.

  • Chisaka Kuehnemann‎ et al.
  • Frontiers in endocrinology‎
  • 2022‎

Cellular senescence is a stress or damage response by which a cell adopts of state of essentially permanent proliferative arrest, coupled to the secretion of a number of biologically active molecules. This senescence-associated secretory phenotype (SASP) underlies many of the degenerative and regenerative aspects of cellular senescence - including promoting wound healing and development, but also driving diabetes and multiple age-associated diseases. We find that nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes the rate-limiting step in nicotinamide adenine dinucleotide (NAD) biosynthesis, is elevated in senescent cells without a commensurate increase in NAD levels. This elevation is distinct from the acute DNA damage response, in which NAD is depleted, and recovery of NAD by NAMPT elevation is AMPK-activated protein kinase (AMPK)-dependent. Instead, we find that senescent cells release extracellular NAMPT (eNAMPT) as part of the SASP. eNAMPT has been reported to be released as a catalytically active extracellular vesicle-contained dimer that promotes NAD increases in other cells and extends lifespan, and also as free monomer that acts as a damage-associated molecular pattern and promotes conditions such as diabetes and fibrosis. Senescent cells released eNAMPT as dimer, but surprisingly eNAMPT appeared in the soluble secretome while being depleted from exosomes. Finally, diabetic mice showed elevated levels of eNAMPT, and this was lowered by treatment with the senolytic drug, ABT-263. Together, these data reveal a new SASP factor with implications for NAD metabolism.


Accelerated aging of the brain transcriptome by the common chemotherapeutic doxorubicin.

  • Alyssa N Cavalier‎ et al.
  • Experimental gerontology‎
  • 2021‎

Cancer is one of the most common age-related diseases, and over one-third of cancer patients will receive chemotherapy. One frequently reported side effect of chemotherapeutic agents like doxorubicin (Doxo) is impaired cognitive function, commonly known as "chemotherapy-induced cognitive impairment (CICI)", which may mimic accelerated brain aging. The biological mechanisms underlying the adverse effects of Doxo on the brain are unclear but could involve mitochondrial dysfunction. Here, we characterized brain (hippocampal) transcriptome and cognitive/behavioral changes in young mice treated with Doxo +/- the mitochondrial therapeutic MitoQ. We found that Doxo altered transcriptome/biological processes related to synaptic transmission and neurotransmitter function, neuronal health and behavior, and that these gene expression changes were: 1) similar to key differences observed in transcriptome data on brain aging; and 2) associated with related, aging-like behavioral differences, such as decreased exploration time and impaired novel object recognition test (NOR, an index of learning/memory) performance. Interestingly, MitoQ partially prevented Doxo-induced transcriptome changes in the brain, but it had no effect on behavior or cognitive function. Collectively, our findings are consistent with the idea that chemotherapeutic agents could induce neuronal/gene expression and behavioral changes similar to those that occur during brain aging. In this context, mitochondrial therapeutics may have potential as treatments for CICI at the biological level, but their effects on behavior/cognitive function require further investigation.


Long-term calorie restriction in humans is not associated with indices of delayed immunologic aging: A descriptive study.

  • A Janet Tomiyama‎ et al.
  • Nutrition and healthy aging‎
  • 2017‎

BACKGROUND: Delayed immunologic aging is purported to be a major mechanism through which calorie restriction (CR) exerts its anti-aging effects in non-human species. However, in non-obese humans, the effect of CR on the immune system has been understudied relative to its effects on the cardiometabolic system. OBJECTIVE: To examine whether CR is associated with delayed immunologic aging in non-obese humans. METHODS: We tested whether long-term CR practitioners (average 10.03 years of CR) evidenced decreased expression of T cell immunosenescence markers and longer immune cell telomeres compared to gender-, race/ethnicity-, age-, and education-matched "healthy" Body Mass Index (BMI) and "overweight"/"obese" BMI groups. RESULTS: Long-term human CR practitioners had lower BMI (p <  0.001) and fasting glucose (p <  0.001), as expected. They showed similar frequencies of pre-senescent cells (CD8+CD28- T cells and CD57 and PD-1 expressing T cells) to the comparison groups. Even after adjusting for covariates, including cytomegalovirus status, we observed shorter peripheral blood mononuclear cell telomeres in the CR group (p = 0.012) and no difference in granulocyte telomeres between groups (p = 0.42). CONCLUSIONS: We observed no clear evidence that CR as it is currently practiced in humans delays immune aging related to telomere length or T cell immunosenescent markers.


Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype.

  • Christopher D Wiley‎ et al.
  • Scientific reports‎
  • 2018‎

Processes that have been linked to aging and cancer include an inflammatory milieu driven by senescent cells. Senescent cells lose the ability to divide, essentially irreversibly, and secrete numerous proteases, cytokines and growth factors, termed the senescence-associated secretory phenotype (SASP). Senescent cells that lack p53 tumor suppressor function show an exaggerated SASP, suggesting the SASP is negatively controlled by p53. Here, we show that increased p53 activity caused by small molecule inhibitors of MDM2, which promotes p53 degradation, reduces inflammatory cytokine production by senescent cells. Upon treatment with the MDM2 inhibitors nutlin-3a or MI-63, human cells acquired a senescence-like growth arrest, but the arrest was reversible. Importantly, the inhibitors reduced expression of the signature SASP factors IL-6 and IL-1α by cells made senescent by genotoxic stimuli, and suppressed the ability of senescent fibroblasts to stimulate breast cancer cell aggressiveness. Our findings suggest that MDM2 inhibitors could reduce cancer progression in part by reducing the pro-inflammatory environment created by senescent cells.


Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent.

  • Bat-Erdene Myagmar‎ et al.
  • Circulation research‎
  • 2017‎

It is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), β1, β2, β3, α1A, and α1B. The β1 and β2 are thought to be the dominant myocyte ARs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: