Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Olfactory testing does not predict β-amyloid, MRI measures of neurodegeneration or vascular pathology in the British 1946 birth cohort.

  • Sarah M Buchanan‎ et al.
  • Journal of neurology‎
  • 2020‎

To explore the value of olfactory identification deficits as a predictor of cerebral β-amyloid status and other markers of brain health in cognitively normal adults aged ~ 70 years.


Study protocol: Insight 46 - a neuroscience sub-study of the MRC National Survey of Health and Development.

  • Christopher A Lane‎ et al.
  • BMC neurology‎
  • 2017‎

Increasing age is the biggest risk factor for dementia, of which Alzheimer's disease is the commonest cause. The pathological changes underpinning Alzheimer's disease are thought to develop at least a decade prior to the onset of symptoms. Molecular positron emission tomography and multi-modal magnetic resonance imaging allow key pathological processes underpinning cognitive impairment - including β-amyloid depostion, vascular disease, network breakdown and atrophy - to be assessed repeatedly and non-invasively. This enables potential determinants of dementia to be delineated earlier, and therefore opens a pre-symptomatic window where intervention may prevent the onset of cognitive symptoms.


Life course, genetic, and neuropathological associations with brain age in the 1946 British Birth Cohort: a population-based study.

  • Aaron Z Wagen‎ et al.
  • The lancet. Healthy longevity‎
  • 2022‎

A neuroimaging-based biomarker termed the brain age is thought to reflect variability in the brain's ageing process and predict longevity. Using Insight 46, a unique narrow-age birth cohort, we aimed to examine potential drivers and correlates of brain age.


Visuomotor integration deficits are common to familial and sporadic preclinical Alzheimer's disease.

  • Kirsty Lu‎ et al.
  • Brain communications‎
  • 2021‎

We investigated whether subtle visuomotor deficits were detectable in familial and sporadic preclinical Alzheimer's disease. A circle-tracing task-with direct and indirect visual feedback, and dual-task subtraction-was completed by 31 individuals at 50% risk of familial Alzheimer's disease (19 presymptomatic mutation carriers; 12 non-carriers) and 390 cognitively normal older adults (members of the British 1946 Birth Cohort, all born during the same week; age range at assessment = 69-71 years), who also underwent β-amyloid-PET/MRI to derive amyloid status (positive/negative), whole-brain volume and white matter hyperintensity volume. We compared preclinical Alzheimer's groups against controls cross-sectionally (mutation carriers versus non-carriers; amyloid-positive versus amyloid-negative) on speed and accuracy of circle-tracing and subtraction. Mutation carriers (mean 7 years before expected onset) and amyloid-positive older adults traced disproportionately less accurately than controls when visual feedback was indirect, and were slower at dual-task subtraction. In the older adults, the same pattern of associations was found when considering amyloid burden as a continuous variable (Standardized Uptake Value Ratio). The effect of amyloid was independent of white matter hyperintensity and brain volumes, which themselves were associated with different aspects of performance: greater white matter hyperintensity volume was also associated with disproportionately poorer tracing accuracy when visual feedback was indirect, whereas larger brain volume was associated with faster tracing and faster subtraction. Mutation carriers also showed evidence of poorer tracing accuracy when visual feedback was direct. This study provides the first evidence of visuomotor integration deficits common to familial and sporadic preclinical Alzheimer's disease, which may precede the onset of clinical symptoms by several years.


A population-based study of head injury, cognitive function and pathological markers.

  • Sarah-Naomi James‎ et al.
  • Annals of clinical and translational neurology‎
  • 2021‎

To assess associations between head injury (HI) with loss of consciousness (LOC), ageing and markers of later-life cerebral pathology; and to explore whether those effects may help explain subtle cognitive deficits in dementia-free individuals.


Investigating the relationship between BMI across adulthood and late life brain pathologies.

  • Christopher A Lane‎ et al.
  • Alzheimer's research & therapy‎
  • 2021‎

In view of reported associations between high adiposity, particularly in midlife and late-life dementia risk, we aimed to determine associations between body mass index (BMI), and BMI changes across adulthood and brain structure and pathology at age 69-71 years.


Increased variability in reaction time is associated with amyloid beta pathology at age 70.

  • Kirsty Lu‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2020‎

We investigated whether life-course factors and neuroimaging biomarkers of Alzheimer's disease pathology predict reaction time (RT) performance in older adults.


Cognition at age 70: Life course predictors and associations with brain pathologies.

  • Kirsty Lu‎ et al.
  • Neurology‎
  • 2019‎

To investigate predictors of performance on a range of cognitive measures including the Preclinical Alzheimer Cognitive Composite (PACC) and test for associations between cognition and dementia biomarkers in Insight 46, a substudy of the Medical Research Council National Survey of Health and Development.


Incidental findings on brain imaging and blood tests: results from the first phase of Insight 46, a prospective observational substudy of the 1946 British birth cohort.

  • Sarah E Keuss‎ et al.
  • BMJ open‎
  • 2019‎

To summarise the incidental findings detected on brain imaging and blood tests during the first wave of data collection for the Insight 46 study.


Amyloid β influences the relationship between cortical thickness and vascular load.

  • Thomas D Parker‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2020‎

Cortical thickness has been proposed as a biomarker of Alzheimer's disease (AD)- related neurodegeneration, but the nature of its relationship with amyloid beta (Aβ) deposition and white matter hyperintensity volume (WMHV) in cognitively normal adults is unclear.


Population-based blood screening for preclinical Alzheimer's disease in a British birth cohort at age 70.

  • Ashvini Keshavan‎ et al.
  • Brain : a journal of neurology‎
  • 2021‎

Alzheimer's disease has a preclinical stage when cerebral amyloid-β deposition occurs before symptoms emerge, and when amyloid-β-targeted therapies may have maximum benefits. Existing amyloid-β status measurement techniques, including amyloid PET and CSF testing, are difficult to deploy at scale, so blood biomarkers are increasingly considered for screening. We compared three different blood-based techniques-liquid chromatography-mass spectrometry measures of plasma amyloid-β, and single molecule array (Simoa) measures of plasma amyloid-β and phospho-tau181-to detect cortical 18F-florbetapir amyloid PET positivity (defined as a standardized uptake value ratio of >0.61 between a predefined cortical region of interest and eroded subcortical white matter) in dementia-free members of Insight 46, a substudy of the population-based British 1946 birth cohort. We used logistic regression models with blood biomarkers as predictors of amyloid PET status, with or without age, sex and APOE ε4 carrier status as covariates. We generated receiver operating characteristics curves and quantified areas under the curves to compare the concordance of the different blood tests with amyloid PET. We determined blood test cut-off points using Youden's index, then estimated numbers needed to screen to obtain 100 amyloid PET-positive individuals. Of the 502 individuals assessed, 441 dementia-free individuals with complete data were included; 82 (18.6%) were amyloid PET-positive. The area under the curve for amyloid PET status using a base model comprising age, sex and APOE ε4 carrier status was 0.695 (95% confidence interval: 0.628-0.762). The two best-performing Simoa plasma biomarkers were amyloid-β42/40 (0.620; 0.548-0.691) and phospho-tau181 (0.707; 0.646-0.768), but neither outperformed the base model. Mass spectrometry plasma measures performed significantly better than any other measure (amyloid-β1-42/1-40: 0.817; 0.770-0.864 and amyloid-β composite: 0.820; 0.775-0.866). At a cut-off point of 0.095, mass spectrometry measures of amyloid-β1-42/1-40 detected amyloid PET positivity with 86.6% sensitivity and 71.9% specificity. Without screening, to obtain 100 PET-positive individuals from a population with similar amyloid PET positivity prevalence to Insight 46, 543 PET scans would need to be performed. Screening using age, sex and APOE ε4 status would require 940 individuals, of whom 266 would proceed to scan. Using mass spectrometry amyloid-β1-42/1-40 alone would reduce these numbers to 623 individuals and 243 individuals, respectively. Across a theoretical range of amyloid PET positivity prevalence of 10-50%, mass spectrometry measures of amyloid-β1-42/1-40 would consistently reduce the numbers proceeding to scans, with greater cost savings demonstrated at lower prevalence.


High blood pressure predicts hippocampal atrophy rate in cognitively impaired elders.

  • Cassidy M Fiford‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2020‎

Understanding relationships among blood pressure (BP), cognition, and brain volume could inform Alzheimer's disease (AD) management.


Neuroimaging, clinical and life course correlates of normal-appearing white matter integrity in 70-year-olds.

  • Sarah-Naomi James‎ et al.
  • Brain communications‎
  • 2023‎

We investigate associations between normal-appearing white matter microstructural integrity in cognitively normal ∼70-year-olds and concurrently measured brain health and cognition, demographics, genetics and life course cardiovascular health. Participants born in the same week in March 1946 (British 1946 birth cohort) underwent PET-MRI around age 70. Mean standardized normal-appearing white matter integrity metrics (fractional anisotropy, mean diffusivity, neurite density index and orientation dispersion index) were derived from diffusion MRI. Linear regression was used to test associations between normal-appearing white matter metrics and (i) concurrent measures, including whole brain volume, white matter hyperintensity volume, PET amyloid and cognition; (ii) the influence of demographic and genetic predictors, including sex, childhood cognition, education, socio-economic position and genetic risk for Alzheimer's disease (APOE-ɛ4); (iii) systolic and diastolic blood pressure and cardiovascular health (Framingham Heart Study Cardiovascular Risk Score) across adulthood. Sex interactions were tested. Statistical significance included false discovery rate correction (5%). Three hundred and sixty-two participants met inclusion criteria (mean age 70, 49% female). Higher white matter hyperintensity volume was associated with lower fractional anisotropy [b = -0.09 (95% confidence interval: -0.11, -0.06), P < 0.01], neurite density index [b = -0.17 (-0.22, -0.12), P < 0.01] and higher mean diffusivity [b = 0.14 (-0.10, -0.17), P < 0.01]; amyloid (in men) was associated with lower fractional anisotropy [b = -0.04 (-0.08, -0.01), P = 0.03)] and higher mean diffusivity [b = 0.06 (0.01, 0.11), P = 0.02]. Framingham Heart Study Cardiovascular Risk Score in later-life (age 69) was associated with normal-appearing white matter {lower fractional anisotropy [b = -0.06 (-0.09, -0.02) P < 0.01], neurite density index [b = -0.10 (-0.17, -0.03), P < 0.01] and higher mean diffusivity [b = 0.09 (0.04, 0.14), P < 0.01]}. Significant sex interactions (P < 0.05) emerged for midlife cardiovascular health (age 53) and normal-appearing white matter at 70: marginal effect plots demonstrated, in women only, normal-appearing white matter was associated with higher midlife Framingham Heart Study Cardiovascular Risk Score (lower fractional anisotropy and neurite density index), midlife systolic (lower fractional anisotropy, neurite density index and higher mean diffusivity) and diastolic (lower fractional anisotropy and neurite density index) blood pressure and greater blood pressure change between 43 and 53 years (lower fractional anisotropy and neurite density index), independently of white matter hyperintensity volume. In summary, poorer normal-appearing white matter microstructural integrity in ∼70-year-olds was associated with measures of cerebral small vessel disease, amyloid (in males) and later-life cardiovascular health, demonstrating how normal-appearing white matter can provide additional information to overt white matter disease. Our findings further show that greater 'midlife' cardiovascular risk and higher blood pressure were associated with poorer normal-appearing white matter microstructural integrity in females only, suggesting that women's brains may be more susceptible to the effects of midlife blood pressure and cardiovascular health.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: