Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

Dkk1 regulates ventral midbrain dopaminergic differentiation and morphogenesis.

  • Diogo Ribeiro‎ et al.
  • PloS one‎
  • 2011‎

Dickkopf1 (Dkk1) is a Wnt/β-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/β-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/β-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1(+/-) embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1(-/-) embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.


Cell cycle control of wnt receptor activation.

  • Gary Davidson‎ et al.
  • Developmental cell‎
  • 2009‎

Low-density lipoprotein receptor related proteins 5 and 6 (LRP5/6) are transmembrane receptors that initiate Wnt/beta-catenin signaling. Phosphorylation of PPPSP motifs in the LRP6 cytoplasmic domain is crucial for signal transduction. Using a kinome-wide RNAi screen, we show that PPPSP phosphorylation requires the Drosophila Cyclin-dependent kinase (CDK) L63. L63 and its vertebrate homolog PFTK are regulated by the membrane tethered G2/M Cyclin, Cyclin Y, which mediates binding to and phosphorylation of LRP6. As a consequence, LRP6 phosphorylation and Wnt/beta-catenin signaling are under cell cycle control and peak at G2/M phase; knockdown of the mitotic regulator CDC25/string, which results in G2/M arrest, enhances Wnt signaling in a Cyclin Y-dependent manner. In Xenopus embryos, Cyclin Y is required in vivo for LRP6 phosphorylation, maternal Wnt signaling, and Wnt-dependent anteroposterior embryonic patterning. G2/M priming of LRP6 by a Cyclin/CDK complex introduces an unexpected new layer of regulation of Wnt signaling.


RAB8B is required for activity and caveolar endocytosis of LRP6.

  • Kubilay Demir‎ et al.
  • Cell reports‎
  • 2013‎

Wnt/β-catenin signaling plays an important role in embryonic development and adult tissue homeostasis. When Wnt ligands bind to the receptor complex, LRP5/6 coreceptors are activated by phosphorylation and concomitantly endocytosed. In vertebrates, Wnt ligands induce caveolin-dependent endocytosis of LRP6 to relay signal downstream, whereas antagonists such as Dickkopf promote clathrin-dependent endocytosis, leading to inhibition. However, little is known about how LRP6 is directed to different internalization mechanisms, and how caveolin-dependent endocytosis is mediated. In an RNAi screen, we identified the Rab GTPase RAB8B as being required for Wnt/β-catenin signaling. RAB8B depletion reduces LRP6 activity, β-catenin accumulation, and induction of Wnt target genes, whereas RAB8B overexpression promotes LRP6 activity and internalization and rescues inhibition of caveolar endocytosis. In Xenopus laevis and Danio rerio, RAB8B morphants show lower Wnt activity during embryonic development. Our results implicate RAB8B as an essential evolutionary conserved component of Wnt/β-catenin signaling through regulation of LRP6 activity and endocytosis.


Endothelial RSPO3 Controls Vascular Stability and Pruning through Non-canonical WNT/Ca(2+)/NFAT Signaling.

  • Beate Scholz‎ et al.
  • Developmental cell‎
  • 2016‎

The WNT signaling enhancer R-spondin3 (RSPO3) is prominently expressed in the vasculature. Correspondingly, embryonic lethality of Rspo3-deficient mice is caused by vessel remodeling defects. Yet the mechanisms underlying vascular RSPO3 function remain elusive. Inducible endothelial Rspo3 deletion (Rspo3-iECKO) resulted in perturbed developmental and tumor vascular remodeling. Endothelial cell apoptosis and vascular pruning led to reduced microvessel density in Rspo3-iECKO mice. Rspo3-iECKO mice strikingly phenocopied the non-canonical WNT signaling-induced vascular defects of mice deleted for the WNT secretion factor Evi/Wls. An endothelial screen for RSPO3 and EVI/WLS co-regulated genes identified Rnf213, Usp18, and Trim30α. RNF213 targets filamin A and NFAT1 for proteasomal degradation attenuating non-canonical WNT/Ca(2+) signaling. Likewise, USP18 and TRIM5α inhibited NFAT1 activation. Consequently, NFAT protein levels were decreased in endothelial cells of Rspo3-iECKO mice and pharmacological NFAT inhibition phenocopied Rspo3-iECKO mice. The data identify endothelial RSPO3-driven non-canonical WNT/Ca(2+)/NFAT signaling as a critical maintenance pathway of the remodeling vasculature.


Fate Specification of Neural Plate Border by Canonical Wnt Signaling and Grhl3 is Crucial for Neural Tube Closure.

  • Chiharu Kimura-Yoshida‎ et al.
  • EBioMedicine‎
  • 2015‎

During primary neurulation, the separation of a single-layered ectodermal sheet into the surface ectoderm (SE) and neural tube specifies SE and neural ectoderm (NE) cell fates. The mechanisms underlying fate specification in conjunction with neural tube closure are poorly understood. Here, by comparing expression profiles between SE and NE lineages, we observed that uncommitted progenitor cells, expressing stem cell markers, are present in the neural plate border/neural fold prior to neural tube closure. Our results also demonstrated that canonical Wnt and its antagonists, DKK1/KREMEN1, progressively specify these progenitors into SE or NE fates in accord with the progress of neural tube closure. Additionally, SE specification of the neural plate border via canonical Wnt signaling is directed by the grainyhead-like 3 (Grhl3) transcription factor. Thus, we propose that the fate specification of uncommitted progenitors in the neural plate border by canonical Wnt signaling and its downstream effector Grhl3 is crucial for neural tube closure. This study implicates that failure in critical genetic factors controlling fate specification of progenitor cells in the neural plate border/neural fold coordinated with neural tube closure may be potential causes of human neural tube defects.


Gadd45a and Gadd45g regulate neural development and exit from pluripotency in Xenopus.

  • Lilian T Kaufmann‎ et al.
  • Mechanisms of development‎
  • 2011‎

Gadd45 genes encode a small family of multifunctional stress response proteins, mediating cell proliferation, apoptosis, DNA repair and DNA demethylation. Their role during embryonic development is incompletely understood. Here we identified Xenopus Gadd45b, compared Gadd45a, Gadd45b and Gadd45g expression during Xenopus embryogenesis, and characterized their gain and loss of function phenotypes. Gadd45a and Gadd45g act redundantly and double Morpholino knock down leads to pleiotropic phenotypes, including shortened axes, head defects and misgastrulation. In contrast, Gadd45b, which is expressed at very low levels, shows little effect upon knock down or overexpression. Gadd45ag double Morphants show reduced neural cell proliferation and downregulation of pan-neural and neural crest markers. In contrast, Gadd45ag Morphants display increased expression of multipotency marker genes including Xenopus oct4 homologs as well as gastrula markers, while mesodermal markers are downregulated. The results indicate that Gadd45ag are required for early embryonic cells to exit pluripotency and enter differentiation.


NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress.

  • Dandan Han‎ et al.
  • eLife‎
  • 2019‎

Base excision repair (BER) functions not only in the maintenance of genomic integrity but also in active DNA demethylation and epigenetic gene regulation. This dual role raises the question if phenotypic abnormalities resulting from deficiency of BER factors are due to DNA damage or impaired DNA demethylation. Here we investigate the bifunctional DNA glycosylases/lyases NEIL1 and NEIL2, which act in repair of oxidative lesions and in epigenetic demethylation. Neil-deficiency in Xenopus embryos and differentiating mouse embryonic stem cells (mESCs) leads to a surprisingly restricted defect in cranial neural crest cell (cNCC) development. Neil-deficiency elicits an oxidative stress-induced TP53-dependent DNA damage response, which impairs early cNCC specification. Epistasis experiments with Tdg-deficient mESCs show no involvement of epigenetic DNA demethylation. Instead, Neil-deficiency results in oxidative damage specific to mitochondrial DNA, which triggers a TP53-mediated intrinsic apoptosis. Thus, NEIL1 and NEIL2 DNA glycosylases protect mitochondrial DNA against oxidative damage during neural crest differentiation.


The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer.

  • Ling-Shih Chang‎ et al.
  • eLife‎
  • 2020‎

A hallmark of Spemann organizer function is its expression of Wnt antagonists that regulate axial embryonic patterning. Here we identify the tumor suppressor Protein tyrosine phosphatase receptor-type kappa (PTPRK), as a Wnt inhibitor in human cancer cells and in the Spemann organizer of Xenopus embryos. We show that PTPRK acts via the transmembrane E3 ubiquitin ligase ZNRF3, a negative regulator of Wnt signaling promoting Wnt receptor degradation, which is also expressed in the organizer. Deficiency of Xenopus Ptprk increases Wnt signaling, leading to reduced expression of Spemann organizer effector genes and inducing head and axial defects. We identify a '4Y' endocytic signal in ZNRF3, which PTPRK maintains unphosphorylated to promote Wnt receptor depletion. Our discovery of PTPRK as a negative regulator of Wnt receptor turnover provides a rationale for its tumor suppressive function and reveals that in PTPRK-RSPO3 recurrent cancer fusions both fusion partners, in fact, encode ZNRF3 regulators.


Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification.

  • Svitlana Melnik‎ et al.
  • Cell discovery‎
  • 2018‎

Use of the diabetes type II drug Metformin is associated with a moderately lowered risk of cancer incidence in numerous tumor entities. Studying the molecular changes associated with the tumor-suppressive action of Metformin we found that the oncogene SOX4, which is upregulated in solid tumors and associated with poor prognosis, was induced by Wnt/β-catenin signaling and blocked by Metformin. Wnt signaling inhibition by Metformin was surprisingly specific for cancer cells. Unraveling the underlying specificity, we identified Metformin and other Mitochondrial Complex I (MCI) inhibitors as inducers of intracellular acidification in cancer cells. We demonstrated that acidification triggers the unfolded protein response to induce the global transcriptional repressor DDIT3, known to block Wnt signaling. Moreover, our results suggest that intracellular acidification universally inhibits Wnt signaling. Based on these findings, we combined MCI inhibitors with H+ ionophores, to escalate cancer cells into intracellular hyper-acidification and ATP depletion. This treatment lowered intracellular pH both in vitro and in a mouse xenograft tumor model, depleted cellular ATP, blocked Wnt signaling, downregulated SOX4, and strongly decreased stemness and viability of cancer cells. Importantly, the inhibition of Wnt signaling occurred downstream of β-catenin, encouraging applications in treatment of cancers caused by APC and β-catenin mutations.


Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning.

  • Nadine Körtel‎ et al.
  • Nucleic acids research‎
  • 2021‎

N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging. Here, we present miCLIP2 in combination with machine learning to significantly improve m6A detection. The optimized miCLIP2 results in high-complexity libraries from less input material. Importantly, we established a robust computational pipeline to tackle the inherent issue of false positives in antibody-based m6A detection. The analyses were calibrated with Mettl3 knockout cells to learn the characteristics of m6A deposition, including m6A sites outside of DRACH motifs. To make our results universally applicable, we trained a machine learning model, m6Aboost, based on the experimental and RNA sequence features. Importantly, m6Aboost allows prediction of genuine m6A sites in miCLIP2 data without filtering for DRACH motifs or the need for Mettl3 depletion. Using m6Aboost, we identify thousands of high-confidence m6A sites in different murine and human cell lines, which provide a rich resource for future analysis. Collectively, our combined experimental and computational methodology greatly improves m6A identification.


RSPO2 inhibits BMP signaling to promote self-renewal in acute myeloid leukemia.

  • Rui Sun‎ et al.
  • Cell reports‎
  • 2021‎

Acute myeloid leukemia (AML) is a rapidly progressing cancer, for which chemotherapy remains standard treatment and additional therapeutic targets are requisite. Here, we show that AML cells secrete the stem cell growth factor R-spondin 2 (RSPO2) to promote their self-renewal and prevent cell differentiation. Although RSPO2 is a well-known WNT agonist, we reveal that it maintains AML self-renewal WNT independently, by inhibiting BMP receptor signaling. Autocrine RSPO2 signaling is also required to prevent differentiation and to promote self-renewal in normal hematopoietic stem cells as well as primary AML cells. Comprehensive datamining reveals that RSPO2 expression is elevated in patients with AML of poor prognosis. Consistently, inhibiting RSPO2 prolongs survival in AML mouse xenograft models. Our study indicates that in AML, RSPO2 acts as an autocrine BMP antagonist to promote cancer cell renewal and may serve as a marker for poor prognosis.


Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation.

  • Lars Schomacher‎ et al.
  • Nature structural & molecular biology‎
  • 2016‎

DNA 5-methylcytosine is a dynamic epigenetic mark with important roles in development and disease. In the Tet-Tdg demethylation pathway, methylated cytosine is iteratively oxidized by Tet dioxygenases, and unmodified cytosine is restored via thymine DNA glycosylase (Tdg). Here we show that human NEIL1 and NEIL2 DNA glycosylases coordinate abasic-site processing during TET-TDG DNA demethylation. NEIL1 and NEIL2 cooperate with TDG during base excision: TDG occupies the abasic site and is displaced by NEILs, which further process the baseless sugar, thereby stimulating TDG-substrate turnover. In early Xenopus embryos, Neil2 cooperates with Tdg in removing oxidized methylcytosines and specifying neural-crest development together with Tet3. Thus, Neils function as AP lyases in the coordinated AP-site handover during oxidative DNA demethylation.


Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover.

  • Nadine Kirsch‎ et al.
  • Developmental cell‎
  • 2017‎

Angiopoietin-like 4 (ANGPTL4) is a secreted signaling protein that is implicated in cardiovascular disease, metabolic disorder, and cancer. Outside of its role in lipid metabolism, ANGPTL4 signaling remains poorly understood. Here, we identify ANGPTL4 as a Wnt signaling antagonist that binds to syndecans and forms a ternary complex with the Wnt co-receptor Lipoprotein receptor-related protein 6 (LRP6). This protein complex is internalized via clathrin-mediated endocytosis and degraded in lysosomes, leading to attenuation of Wnt/β-catenin signaling. Angptl4 is expressed in the Spemann organizer of Xenopus embryos and acts as a Wnt antagonist to promote notochord formation and prevent muscle differentiation. This unexpected function of ANGPTL4 invites re-interpretation of its diverse physiological effects in light of Wnt signaling and may open therapeutic avenues for human disease.


Parkinson's disease-associated receptor GPR37 is an ER chaperone for LRP6.

  • Birgit S Berger‎ et al.
  • EMBO reports‎
  • 2017‎

Wnt/β-catenin signaling plays a key role in embryonic development, stem cell biology, and neurogenesis. However, the mechanisms of Wnt signal transmission, notably how the receptors are regulated, remain incompletely understood. Here we describe that the Parkinson's disease-associated receptor GPR37 functions in the maturation of the N-terminal bulky β-propellers of the Wnt co-receptor LRP6. GPR37 is required for Wnt/β-catenin signaling and protects LRP6 from ER-associated degradation via CHIP (carboxyl terminus of Hsc70-interacting protein) and the ATPase VCP GPR37 is highly expressed in neural progenitor cells (NPCs) where it is required for Wnt-dependent neurogenesis. We conclude that GPR37 is crucial for cellular protein quality control during Wnt signaling.


Gadd45a is an RNA binding protein and is localized in nuclear speckles.

  • Yuliya A Sytnikova‎ et al.
  • PloS one‎
  • 2011‎

The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids.


Mice lacking DKK1 in T cells exhibit high bone mass and are protected from estrogen-deficiency-induced bone loss.

  • Juliane Lehmann‎ et al.
  • iScience‎
  • 2021‎

The Wnt inhibitor Dickkopf-1 (DKK1) is a negative regulator of bone formation and bone mass and is dysregulated in various bone diseases. How DKK1 contributes to postmenopausal osteoporosis, however, remains poorly understood. Here, we show that mice lacking DKK1 in T cells are protected from ovariectomy-induced bone loss. Ovariectomy activated CD4+ and CD8+ T cells and increased their production of DKK1. Co-culture of activated T cells with osteoblasts inhibited Wnt signaling in osteoblasts, leading to impaired differentiation. Importantly, DKK1 expression in T cells also controlled physiological bone remodeling. T-cell-deficient Dkk1 knock-out mice had a higher bone mass with an increased bone formation rate and decreased numbers of osteoclasts compared with controls, a phenotype that was rescued by adoptive transfer of wild-type T cells. Thus, these findings highlight that T cells control bone remodeling in health and disease via their expression of DKK1.


Mammalian N1-adenosine PARylation is a reversible DNA modification.

  • Michael U Musheev‎ et al.
  • Nature communications‎
  • 2022‎

Poly-ADP-ribosylation (PARylation) is regarded as a protein-specific modification. However, some PARPs were recently shown to modify DNA termini in vitro. Here, we use ultrasensitive mass spectrometry (LC-MS/MS), anti-PAR antibodies, and anti-PAR reagents to show that mammalian DNA is physiologically PARylated and to different levels in primary tissues. Inhibition of PAR glycohydrolase (PARG) increases DNA PARylation, supporting that the modification is reversible. DNA PARylation requires PARP1 and in vitro PARP1 PARylates single-stranded DNA, while PARG reverts the modification. DNA PARylation occurs at the N1-position of adenosine residues to form N1-Poly(ADP-ribosyl)-deoxyadenosine. Through partial hydrolysis of mammalian gDNA we identify PAR-DNA via the diagnostic deamination product N1-ribosyl-deoxyinosine to occur in vivo. The discovery of N1-adenosine PARylation as a DNA modification establishes the conceptual and methodological framework to elucidate its biological relevance and extends the role of PARP enzymes.


R-spondins are BMP receptor antagonists in Xenopus early embryonic development.

  • Hyeyoon Lee‎ et al.
  • Nature communications‎
  • 2020‎

BMP signaling plays key roles in development, stem cells, adult tissue homeostasis, and disease. How BMP receptors are extracellularly modulated and in which physiological context, is therefore of prime importance. R-spondins (RSPOs) are a small family of secreted proteins that co-activate WNT signaling and function as potent stem cell effectors and oncogenes. Evidence is mounting that RSPOs act WNT-independently but how and in which physiological processes remains enigmatic. Here we show that RSPO2 and RSPO3 also act as BMP antagonists. RSPO2 is a high affinity ligand for the type I BMP receptor BMPR1A/ALK3, and it engages ZNRF3 to trigger internalization and degradation of BMPR1A. In early Xenopus embryos, Rspo2 is a negative feedback inhibitor in the BMP4 synexpression group and regulates dorsoventral axis formation. We conclude that R-spondins are bifunctional ligands, which activate WNT- and inhibit BMP signaling via ZNRF3, with implications for development and cancer.


RNA stability controlled by m6A methylation contributes to X-to-autosome dosage compensation in mammals.

  • Cornelia Rücklé‎ et al.
  • Nature structural & molecular biology‎
  • 2023‎

In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.


R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient.

  • Hyeyoon Lee‎ et al.
  • Nature communications‎
  • 2024‎

Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: